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PREFACE

The work reported herein was done for the Advanced
Instructional Design Advisor project at the Air Force Armstrong
Laboratory (ALHRD -- formerly AFHRL). The substance of this
research was done under contract to Mei Associates, Inc., the
primary contractor on the Advanced Instructional Design Advisor
(Contract No. F33615-88-C-0003).

This work was done as part of the first phase effort on the
Advanced Instructional Design Advisor. The initial phase of this
project established the conceptual framework and functional
specifications for the Advanced Instructional Design Advisor, an
automated and intelligent collection of tools to assist subject
matter experts who have no special training in instructional
technology in the design and development of effective computer-
based instructional materials.

Mei Associates' final report for the initial phase is to be
published as an Armstrong Laboratory Technical Paper. 1In
addition, Mei Associates received 14 papers from the seven
consultants working on this phase of the project. These 14
papers have been grouped into 6 sets and edited by ALHRD/IDC .
personnel. They are published as Volumes 1 - 6 of Desjgning an
Advanced Instructional Design Advisor:

Volume 1: Cognitive Science Foundations
Volume 2: Principles of Instructional Design °

Volume 3: Possibilities for Automation

Volume 4: ' Incorporating Visual Materials
and Other Research Issues

Volume 5: Conceptual Frameworks
Volume 6: Transaction Shell Theory

This is Volume 3 in the series. Dr. J. Michael Spector

wrote Sections I and IV. Dr. Henry M. Halff wrote Sections II
and III.
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SUMMARY

The Advanced Instructional Design Advisor is an R & D
project being conducted by the Air Force Human Resources
Laboratory ;n response to an Air TrainingICOmmand (ATC) Manpower,
Personnel, aﬁd Training NeedAcalling for improved guidelines for
éuthoring computer-based instruction (CBI) (MPTN 89414T).

Aggravating the expensive and time-consuming proéocess of CBI
development is the lack of Air Force personnel who are well-
trained in the areas of instructional technology and educational
psychology. More often than not, a subject matter expert with
little knowledge of CBI is given the task of designing and
developing a computer-based course. Instructional strategies
that work in a classroom are often inappropriate in a computer-
based setting (e.g., leading questions may work well in a
classroom but are difficult to handle in a computer setting).
Likewise, the computer offers the capability to present
instruction in ways that are not possible in the classroom (e.g.,
computer simulations models can be used to enhance CBI).

The Advanced Instructional Design Advisor is a project aimed
at providing subject matter experts who have no background in
computer-based instructional systems with automated and
intelligent assistance in the design and development of CBI. The
goal is to reduce CBI development time while insuring that the

instructional materials are effective.




I. INTRODUCTION (Spector)

The Advanced Instructional Design Advisor is an R & D
project aimed at providing automated and intelligent assistance
to inexperienced instructional designers who have the task of
designing and developing computer-based instruction (CBI). The
particular problem being addressed by this line of research is
the need for more cost efficient methodologies for the design and
development of CBI. Current methods for developing CBI are
expensive, time-consuming, and often result in ineffective
instruction due to the general lack of expertise in computer-
based instructional systems (Spector, 1990).

The Advanced Instructional Design Advisor project is divided
into four phases:

Phase 1: Conceptualization & Functional Specifications
Phase 2: Conceptual Refinement & System Specifications
Phase 3: Prototype, Field Test, & Refinement

Phase 4: Technology Demonstration & System Validation

The first two phases have been accomplished with Task Order
Contracts. The third phase is being performed via a Broad Agency -
Announcement (BAA). The fourth phase will be accomplished via a
fully specified contract. The work reported herein concerns the
first phase.

The next several sections of this paper address the
prospects for automating the instructional design process. 1In
considering how to automate this process, a relevant initial set
concerns involves the extent to which the process lends itself to
automation and various alternative ways of providing that
automation. Not every process can be automated. For example,
creative processes do not lend themselves to automation since
there is seldom an algorithmic representation for these
processes.

Processes which involve frequent judgment and adjustment to
circumstances may not be good candidates for automation since it
is difficult to precisely define how judgments and adjustments
are made. Instructional design involves judgment. Difficulty of
tasks being trained must be assessed. Appropriateness of
instructiuonal strategies to particular lesson objectives must be
determined. 1In addition, adjustments for instructional setting
and student characteristics must be made.

Due to these difficulties, it is reasonable to address to
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what extent the instructional design process can be automated.
Halff addresses this question in the second part of this paper.
He determines that there are prospects for automation and
describes two different approaches: advisory and generative. He
recommends the generative approach as the more promising of the
two, since it does not address the difficult problem of
automating the development of completely new instructional
designs.

In the third part of this paper, Halff considers a tentative
architecture for the Advanced Instructional Design Advisor (AIDA)
and addresses specific problems involved in each of the
functional components. He then imagines two incarnations of
AIDA. In the first, AIDA is focused on a very narrow subject
area and contains more instructional design expertise. 1In the
second, AIDA is designed for broader subject matter domains and
is targeted for use by knowledgeable instructional designers.

Halff's two AIDA's are quite different in many essential
aspects. The first is built around ready-made instructional
templates with default slots. The second is built around a
production system and configurable instructional schemata. The
first can be used by subject matter experts with little
instructional design expertise. The second is intended for use
by experienced instructional designers.

The contrast of these two systems highlights the need to
decide to what extent human instructional design expertise should
be kept in the instructional development process. Halff also
emphasizes the need to determine who the users will be and what
subject matter areas will be supported by an automated
instructional design tool such as AIDA.




II. PROSPECTS FOR AUTOMATING INSTRUCTIONAL DESIGN (Halff)

. Introduction

This paper explores both the limits of and opportunities for
automation in the design and development of instruction. My
intention is to argue for two recommendations in the development
of automated instructional design:

1) Automation should assist in the generation of instruction
from known designs =-- not the creation of designs to be
implemented manually.

2) Automation projects should support existing instructional
paradigms for broad subject-matter areas (e.g., computer
programming), and should not strive to implement some
"universal®™ theory of instructional design.

In the second section of this chapter I lay the groundwork

- for these arguments by reviewing the main lines of research that
do or should influence the field of instructional design. I
begin with an examination of theory in learning and cognition,
and follow this with a discussion of some newer work on the
cultural bases of instruction. Finally, I examine the
relationship of these theories to research and recommendations of
the instructional design community.

In the third section, I consider two general approaches to
the automation of instructional design. On the advisory
approach, computers advise instructional developers, and, in
particular, devise designs for instructional applications.
Design knowledge is represented in a computer and implementation
is primarily the responsibility of a human developer. On the
generative approach instructional designers rely on computers to
generate the instruction that implements an existing design. )
Design knowledge is primarily resident in a human designer, who
uses a computer to help implement the designs. That my
sympathies lie with the generative approach should be evident.

In the fourth section of this chapter I describe two
challenging but not impossible projects that illustrate this
approach. I use these two cases to speculate on the conditions
appropriate for automated generation of instruction and on the
problem of generality in instructional design. .

In the final section, I recap the arguments made in the
earlier parts and point the way to more effective automation of
instructional design.

e d e os t of Automatio
One of the main themes of this paper is the relationship
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between the automation of some instructional design function and
the justification for that function. Below, I argue that both of
these functions require an explicit theory of instructional
design. To set the context for the argument, and for other
points to be made, a brief review of approaches to instructional
design is in order.

Learning Theory

The most natural and most long-standing theoretical approach
to instructional design is that of learning theory. From a
scientific point of view, the design of systems for human
learning should be founded on a knowledge of the fundamental
mechanisms of learning. The study of learning mechanisms has
always been a major part of psychology. Learning research has
its roots in the empiricist philosophers of the eighteenth
century; it dominated American psychology almost completely in

the first half of this century; and it is manifest today as
cognitive psychology.

Fundamental Commjtments. Throughout its history, research

and theory on learning have been characterized by two strong
commitments:

1) Learning should be understood in mechanistic terms. A
complete theory of learning is one that describes stimuli
(inputs), responses (outputs), performance mechanisms (rules
for generating inputs from ocutputs), and the laws of
learning (rules that specify how the performance mechanism
changes with experience). :

2) The unit of analysis in any theory of learning is the
individual organism. If one can determine the laws that
govern an individual's learning, one can then (in theory)
account for his or her behavior in any setting, no matter
how complex.

An approach to instructional.design follows quite naturally
from these commitments. The general goal of instruction is to
arrange for optimal behavior across a range of stimulus
situations. A complete learning theory predicts the behavior
that results from any particular set of learning experiences. By
inverting this function, it should be possible to determine which
experiences optimize behavior.

\'4 ion. Early approaches to learning
theory were born of the behaviorist tradition. Those working in
that tradition proposec that learning was nothing more than the
establishment, through recinforcement, of associations between
observable stimuli and observable responses. Coupled with
performance rules to account for generalization and motivational
effects, the behaviorists met with some success both in
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explaining learning in the lab and in assisting with the design
of instruction.

The behaviorists' success, however, was limited to simple S-
R spaces and to cases where instructional objectives could be
defined in a clear-cut fashion. In the sixties, it became clear,
on both theoretical and empirical grounds that the behaviorist
approach could not account for the learning of complex skills
such as language comprehension. The case of language
comprehension is particularly poignant since it can be shown
(Gold, 1967) that this skill cannot, in principle, be acquired
under behaviorist assumptions. Needed are some additional
mechanisms for structuring the learning process.

What emerged from the lessons of the sixties was the
realization that most behavior of interest to instructional
designers is mediated by intermediate, unobservable cognitive
structures, and that these structures are too complex to be
induced by a simple behaviorist approach to learning.
Associations form during learning not between stimuli and
responses but between cognitive structures, and learning
typically has as much to do with development of the structures
themselves as with the formation of associations among them.

The implications of the cognitive revolution for those
interested in a learning-theoretic approach to instruction are
not encouraging. Instructional objectives must, at some point in
the design process, be represented as the cognitive structures
that support skilled performance. Simply denoting the input-
output (S-R) requirements of a skill is impossible for some
skills and, in the case of other skills, insufficient for
instructional purposes.

Unfortunately, there is no consistent methodology for
determining the cognitive structures that support skilled
performance. A grab-bag of methods such as thinking-aloud
protocols can be used to shed light on these structures, and a
number of formalisms are available for representing them.
However, there is no mechanistic way of applying the methods;
there are no generally applicable means of determining the
uniqueness (necessity) of a particular cognitive model; and there
are no general methods of determining the learning mechanism
responsible for the acquisition of cognitive structures.

Although the cognitive revolution did considerable damage to
the simple behavioristic approach to learning, it did not change
learning theorist's commitment to the fundamental principles
mentioned above. Like behaviorists, cognitive psychologists seek
a mechanistic explanation of learring, and like behaviorists,
they are committed to understanding learning as a phenomenon of
the individual learner.




Instruction and Culture

One of the implications of the commitment to the individual
learner as the unit of analysis is that uninstructed learning,
such as that which occuts when a child walks alone through the
woods, is no different in its mechanisms than instructed
learning, such as that which occurs when the child walks with a
teacher or parent. Instruction can be designed to make the best
of the mechanisms of learning, but those mechanisms do not change
in nature as the consequence of the instructional situation.

Parsimony argues for the homogeneity of learning mechanisms,
but common sense argues against it. Our use of shared knowledge
and the instruction that makes shared knowledge possible sets us
apart from all other species. It is almost absurd to think that
the mechanisms (such as language) developed o share knc.ledge
are specializations of teaching alone and are not accompanied by
corresponding specialized learning mechanisms.

In this section we view instruction, not as the manipulation
of fixed learning mechanisms but as a cooperative venture, one
that takes advantage of corresponding teaching and learning
mechanisms. We examine three lines of research, one concerned
with cooperative mechanisms for structuring student-teacher
interactions, a second that provides information on the role of
structure in learning, and a third that examines more global
issues concerning the cultural aspects of learning.

o o) . We begin with
Mehan's (1979) "constitutive ethnography" of lessons delivered in
a first-grade classroom. His objective was to show that
interactions among students and the teacher were governed by a
shared "grammar" that defined the structure of a lessorn. The
model developed by Mehan specified:

the grammatical rules that could be used to "parse" a lesson
into its constituent parts and subparts,

the mechanisms used by students and teachers to instantiate

the grammar (i.e. to make sure that all parts were included
in the right order), and

the mechanisms used to repair the structure whenever it was
compromised by external or internal interruptionms.

An overview of the grammar itself may give the reader some
flavor for the results. Each lesson consists of

an opening that orients the students to the lesson's
activities,

a body, in which the class covers the subject matter, and
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a closing, that serves to inform students of the end of the
lesson.

The body, as Figure 1 shows, can, in turn, be decomposed
into the treatment or coverage of any number of topically related
sets of interactions. Each interaction consists of a query
(usually from the teacher), a reply (usually from a student), and
an evaluation by the person initiating the interaction. The
grammar is flexible enough to allow for some structure in the
topically related groups and, more importantly, for extended
interactions in which the conversation is extended until all
three components satisfy the conversants. Two typical
interactions are shown in Figure 2. :

Mehan provided empirical support for the model as an account
of all of the interactions, captured on videotape, of thirteen
lessons on different subjects at different times in a single
first-grade classroom. He was able to show that the proposed
structure governed the majority of interactions in the classroom
and that where the interactional structure was violated, the '
participants invariably invoked one of the proposed repair
mechanisms.

Hierarchical
Organization

h .
1 EVENT Lesson
PHASE Opening Instructional Closing
[TYPE OF
EQUENGE|Directive] Inform. ¢  gficit Elicit [intormazive |Directive
ORG OF
-R-E |I- -R- -R- -R (E 1-R-E
bequence 1-R-E |1 R(EJ I-R-E -R-E | 1-R ( J
P:f;#g' r-s-1|r-s-1| r-s-1 |T-8-1| T-s-1 | T-s-T

Sequential Organization

KEY: T« t..ch.r: S « student dt? Mehan, 1979
1=A-E = iniitialon-repliy-evaluation (Adapted from Mehan, 1979)

Eo- evaluation optional In Informative sequence
Figure 1. The Structure of Classroom Lessons

Mehan concludes that success in the classroom depends on
mutual adherence to the interactional structure. The teacher
found the structuring conventions useful in instructing only
because the students "bought into" them. The students found the
same conventions useful in learning only because the teacher made
use of them in covering the subject matter.




INITIATION REPLY EVALUATION

5:77
T: Now who knows
what this one says
(holds up new card)?
This is the long word.
Who knows what it saya?] A: Cafeteria T: Cafeteria, Audrey.
: Good for you.

5:82

T: What does it say :
over there? Many: Cafeteria T: That's right.

(Adapted from Mehan, 1979)

Figure 2. Typical Interaction Sequences.

It is this interdependence that makes it difficult to view
what goes on in a classroom from a learning-theoretic point of
view. It cannot be said that the students conform to some
general laws of learning, for their behavior 'is clearly fitted to
the particular social conventions at work in the classroom. The
lessons learned (pun intended) from Mehan's work would tell us
little about how people might acquire the same skills in say
uninstructed situations or through computer-assisted instruction.
Conversely, it cannot be said that the teacher applied general
design principles to the construction of her lessons. The
devices that she used to cover the subject matter depended on the
particular social conventions used in the classroom.

. After reading Mehan's work, one
cannot help but be struck by the author's complete disinterest in
learning and instruction. Although he offers elaborate and
convincing evidence that classroom interactions are structured by
a set of cultural conventions, he makes no claim that the
resulting structure has anything to do with what students learn.
Mehan's analysis provides much fodder for conjecture on this
point, but for a precise account of the role of culture in
instruction, we turn to the work of VanLehn (1987) and the design
of instruction in multicolumn subtraction skills. VanLehn's early
work, done in collaboration with others, is well known and can be
easily summarized. The early impetus for research in the area
was the observation (Burton, 1972) that children at intermediate
stages of learning exhibit systematic error patterns known as
mind bugs and that it is possible to give a precise procedural
account of each of these bugs. One bug, for example is manifest
in a procedure that writes, in the answer row of each column, the
result of subtracting the smaller digit in the column from the
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larger. This bug, illustrated in Figure 3, is called the
"smaller-from-larger bug."

4 1 2
- 337
12596

(The Smaller-From-Larger Mind Bug)

Figure 3. Subtraction Problem lllustrating Bug

A second step in this research (Brown & VanLehn, 1980)
accounted for bugs in terms of a general procedural .
representation of the multi-column subtraction procedure itself.
The procedural representation was rule-based, and the account
proposed that bugs arise because students who are "missing" one
or more rules are brought to an impasse on certain problems.
Confronted with an impasse, the students use a local problem-
solving strategy to produce a "syntactically" correct response.
The smaller-from-larger bug, for example, is invented by students
who have no borrowing rule when they face a problem requiring
borrowing.

The third step in this line of research and the one of
central concern here, addressed the acquisition of subtraction
skills over the four-six year span that they are taught in
school. VanLehn reached three crucial conclusions about learning
in this situation. First, students acquire the skill by inducing
the multicolumn subtraction procedure from exercises and
examples. The semantics of the procedure, its relationship to
the number system, and all other teleological considerations
appear to have no effect on learning. VanlLehn based this
conclusion largely on the fact that students choice of bugs show
no bias towards the semantics or purpose of the procedure.

Second, VanLehn showed that it is impossible, in principle,
to induce the procedure for multi-column subtraction from a

9




random sequence of examples or, more precisely, from a sequence
of examples taken by the student to be random. The induction
problem in this case has two faces. First, the procedure
contains disjunctions or choices needed to handle special cases
such as borrowing and borrowing from zero. No finite but
unstructured set of examples contains enough information to allow
a student to discriminate the correct rules. Second, the
procedure calls for the computation of intermediate results, the
results of borrowing in particular. Examples themselves do not
offer enough information to induce the intermediate calculations.

At this point we are faced with a paradox. - Students appear
to learn this procedure from exercises and examples, yet these
exercises and examples are not, in principle, sufficient to
support learning. The problem is not specific to multicolumn
subtraction. Many of the procedures that we acquire are learned
from exercises and examples, contain disjunctions, and have
intermediate computations. How then do we learn these
procedures?

VanlLehn was forced to the conclusion that the exercises and
examples provided to the student are not random and were not
perceived by students as random. Rather, they are structured in
such a way as to permit learning and that this structure was
apprehended by the student. He proposed two design principles
needed to make the procedure learnable. A one~step-per-lesson
rule requires that the exercises and examples in a curriculum be
grouped into lessons, and that each lesson addresses a single
disjunction or step in the procedure under study. Examples and
exercises in a lesson require only the step addressed in the
lesson and steps acquired in previous lessons. Second, a show-
work principle dictates that the results of intermediate
calculations be shown in all worked examples as they are in
Figure 4. If these two principles constrain the design of a
curriculum and if they likewise constrain the learning process,
then it is possible to induce the subtraction procedure from a
curriculum of exercises and examples.

3 10 1
¥ ¥ 2
- 337

7 5

(llustrating Show-Work, Correctly Worked)

Figure 4. Subtraction Problem With Show-Work
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On the design side he showed that textbooks do indeed
conform to the one-step-at-a-time and the show-work principles.
Oon the learning side he created all possible learning
trajectories admissible under these principles and showed that
the bugs and bug patterns in these trajectories matched
approximately, but far from perfectly, the bugs and bug patterns
found in children's performance.

what is important about step theory is not so much its
empirical support as the conclusion that learning mechanisms and
instructional design are interdependent. The design principles
(one step per lesson and show work) are needed to sufficiently
constrain the learning task, but these principles are only
effective if they also constrain the student's learning process.
Effective instructional design and effective learning are, in
this case a cooperative enterprise. The designer and the
learner, although without consultation, agree to honor the
conventions needed for effective learning. Conventions that thus
pervade our society are, by definition, deemed to be part of our
culture. In this sense, Vanlehn's approach provides the vital
insight that culture, at least in some cases, makes learning
possible by cutting the induction problem down to size.

Situated Cognition. The implicit presumption in our
consideration of both Mehan's and VanLehn's work is that certain
cultural mechanisms used for instructional purposes can be
abandoned once the student leaves the instructional situation.
In other words, the cultural conventions that support the
acquisition of a skill can be divorced from the content of the
skill itself. More recently, this presumption has been called
into question by those interested in the notion of situated
cognition.

The roots of the situated-cognition notion can be found in
Dreyfus' (1972) arguments concerning the limits of formal
(computer) representations as an account for behavior in natural
settings. Learning theorists (including cognitive scientists)
have long been fond of pointing out that complex behavior is
nothing more than the interaction of simple mechanisms with a
complex environment. Dreyfus turned this very proposition on its
own creators by arguing that the environment is so complex that
even complete knowledge of learning mechanisms will be useless in
accounting for behavior in arbitrarily-chosen natural settings.
The success of any cognitive-science model, Dreyfus argued, rests
on simplifying ad hoc assumptions based on the scientist's
intuitions about the relevant aspects of the situation being
modeled.

More recently, similar arquments have been made by cognitive
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scientists (Brown, Collins, & DuGuid, 1989; Greeno, 1989)
interested in the effect or lack of effect of instruction on
cognitive functions in non-instructional settings. Critical to
the thinking of these scientists is the contention that non-
instructional situations almost always offer contextual support
for cognitive operations that completely bypass the methods
taught in school to accomplish the same ends. Often cited, for
example, is Lave's (1988) observation of an individual who, when
faced with the task of obtaining 3/4 of 2/3 of a cup of cottage
cheese, measured out 2/3 of a cup, physically divided the result
into quarters, and helped himself to three of the four quarters.
Because he was situated in a context that afforded him the
netessary tools, he was relieved of the burden of formulating a
"school" method for achieving the result.

Insights on the situated nature of cognition have two
lessons. First, they lead us to the conclusion that the cultural
mechanisms used to make learning possible (or easier) may also
have the unintended effect of limiting its applicability. 1In the
extreme, the argument goes, instruction is so tailored to the
instructional "culture" that it is totally useless in any other
culture.

The second lesson is methodological. The methods that we
use to study learning and to design instruction are themselves
situated. The conclusions that we reach concerning learning and
the recommendations that we provide to instructional designers
depend on implicit agreements on the nature of instruction. The
point is important when we entertain the notion of automating the
design process because a computer does not share the same
understandings as a human instructional designer. Hence, the
same design recommendations may be interpreted in very different
manners by machines and humans.

We return to this point in the next section, but the
foundation for our discussion there rests on an understanding of
the research tradition concerned explicitly with instructional
design.

Inst tional Desj

The instructional design tradition (Gagne & Briggs, 1979) is
concerned with the development of a design science for
instruction. Judging from the work of this community, their goal
is a set of handbooks containing step-by-step instructions for
designing, developing, and maintaining instruction from the first
inkling of an instructional need to the time when that need
ceases to exist.

Those working in this tradition have avoided the commitments
of those who proceed from learning theory and have skirted many
of the problems of the learning-theoretic approach.

12




Instructional design researchers are not explicitly
committed to mechanism. Many of the guidelines found in their
work make no reference to any mechanism of learning (and
sometimes have no justification whatsoever). Where learning
theory applies, it can be used in design recommandations. Other
bases for a recommendation must be used when learning theory is
noncommittal or irrelevant to a design decision.

Instructional designers also have been more aware of the
situated nature of learning and performance. The research
tradition, in fact, receives much of its impetus from the fact
that much of training is not oriented towards the job :
requirements of the students. Instructional designers are
exquisitely sensitive to the aims of instruction. They would,
recalling Lave (1988) observation recounted above, as a matter of
course examine how measuring is done in the job situation and
orient instruction to the results of that examination.

Fundamental Commitments. This is not to say that

instructional designers do not have ctheir own commitments.

Unlike learning theorists, instructional designers are
concerned with the process of designing instruction. They have a
fundamental commitment to the development of a uniform design
process that covers the life cycle of any instructional
enterprise. This commitment has profound implications for both
theory and practice. In theory, when considerihg the balance
between the power of skill-specific instructional methods and the
power of general instructional principles, instructional
designers weigh in on the side of general instructional
principles. 1In practice (and to the annoyance of many consumers
of instructional design), instructional designers have a tendency
to begin each project anew, often putting forth a major effort
only to arrive at a design only slightly different from existing
instruction.

A related commitment of instructional designers is to a two-
stage process that separates analysis from design and
development. That is, they are committed to the belief that
instructional objectives can be determined without reference to
instructional methods. Conversely (and related to the point made
above), instructional methods are not subject-specific. How to
teach can be determined by the application of general
instructional principles to instructional objectives. What
distinguishes the teaching of calculus from the teaching of
French are the objectives to be met, and not the principles used
to meet those objectives.

This analysis-design process can be found in a number of
other fields that espouse a top-down, systems approach to design.
The top-down approach in the ISD tradition is typically an
exercise ’‘n decomposition, classification, and mapping. Primary
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instructional goals are decomposed into a hierarchy of primary
and enabling objectives. These objectives are then classified
along several dimensions, and the results of the classification
are mapped into instructional methods. Instructional design
therefore seeks to advise developers as to the kind of
instruction to be used. The content of the instruction is the
responsibility of the instructional developer.

. A theory of
instructional design (or any other theory, in fact) need not be
correct in all of its details, but it must carry with it the
methodology for verifying any assertion made within the theory.
We need to ask then what it means to verify any or all of the
numerous design recommendations proposed by researchers in
instructional design.

The instructional design community has, I believe, serious
problems in confronting this issue, and these same problems
impose limits on the extent to which the instructional design
process, as they view it, can be automated.

The heart of the problem is that the community, while it has
been concerned with the development of good instructional design
has not been explicit about what constitutes a design to begin
with. As it stands now, instructional design recommendations
when they work, rely, as do cognitive models, on implicit
agreements among researchers and designers on what constitutes a
design. The implementation of any particular recommendation in
any particular situation depends on the designer's intuitions
about how the recommendation should be interpreted in the
particular context. In some situations these interpretations are
straightforward, however, the variety of contexts and the complex
dependencies among instructional objectives make the possibility
seem remote that any theory will be able to generate the wide
range of human instructional endeavors, and, at the same time
preserve all important distinctions among them.

Without knowing the possibilities for any particular
instructional design, how those possibilities relate to each
other or how the could be implemented, it is impossible to frame
a method for validating the recommendation. Even more important
for our purposes, the lack of an explicit design space limits the
possibilities for automating the design process. Automating the
design process itself would require a method for formally
representing all of the knowledge that one might want to teach
and casting the principles of instructional design so that they
could work with the knowledge thus represented.

Approaches to Automating Design

It is not the intent of this paper to explore all of the
ways that automation might support instructional design. 1Instead
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we concentrate on ways that design knowledge can be incorporated
into computers and used to create instructional materials.
Eliminated from consideration are the use of computers for
support functions such as document processing and the use of
computers simply to store and present reference materials on
instructional design.

Advisory Approaches

As was mentioned in the introduction, one attractive use of
computers in instruction is to involve them in the process of
instructional design. A design advisor seems the ideal marriage
of the vast body of instructional design rules and current
expert-systems technology. Such a combination might well be able
to support the design process by

eliciting, from a human developer the instructional
objectives for the application,.

eliciting the information needed to classify each objective,
and

creating a design for the course by applying design
guidelines to the information gathered by the designer.

The advantages of this approach are evident. It would
relieve instructional designers of the burdensome bookkeeping
associated with the conventional process. It would provide an
audit trail that could be used to justify the inclusion or .
exclusion of material and to provide a basis for course revision.
Automating the design process would help to ensure a uniform,
presumably high, quality of instruction. Automation would lower
the skill requirements for instructional developers.

However, the viability and usefulness of advisory systems
rest on certain assumptions, each of which is questionable in the
light of the above discussion.

One such assumption is that instructional design principles
are separable from content. At issue is the extent to which
design principles must be specialized. If the same design
principle is used for all objectives requiring, say,
classification of individual stimuli, then an advisory system
could offer a considerable advantage. 1If, however, the design of
troubleshooting training for, say, Ford Tauri is governed by
different principles than that for Buick LeSabres, an advisory
system cannot participate usefully in the design process.

The usefulness of an advisory system also rests on the
assumption that such a system complements the strengths and
weaknesses of human developers. Even if an advisory system could
make a substantive contribution to the instructional design
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process, it may well be that their contribution is not the one
really needed by the instructional development community. It is
not difficult tq envision a system that through an hour's dialog
leads an instructional developer to a conclusion that he would
have reached unassisted in five minutes. Nor is it difficult to
envision the same system leaving the really difficult and time
consuming aspects of the development process to the human
developer. In short, a system that provides design guidance for
human developers is only useful to the extent that those
developers lack design skills and possess development skills.

The advisory systems envisioned here are principled. That
is, they implement certain principles of instructional design to
guide the developer through a top-down design process. The
relative usefulness of such an approach depends on the relative
effectiveness of this philosophy in dealing with real
instructional-design processes. For development de novo, this
approach may make sense, but I suspect that little instructional
development starts from scratch. New training, in one way or
another, is derived from old training. In some cases, developers
may draw on the culture of the training institution to create new
training. For example, commercial pilots qualifying for a new
type of aircraft can expect the same type of training as they
received in previous, similar situations. In other cases, the
subject matter itself carries its own instructional methods. A
scientist faced with the responsibility of keeping her graduate
students abreast of their field normally make available to her
students the same mechanisms that she used to acquire the
knowledge.

Finally, the effectiveness of an advisory system rests on
the availability of the information required to drive the course
development along the course set by the advisor. Instructional
development can and must proceed in many cases when such
knowledge is incomplete. For example, a commonly agreed-upon
stage in instructional design is the formulation of explicit
procedures for successful performance of a task. For some
instructional objectives such as multicolumn subtraction, such
procedural formulations are available. For others, such as X-Ray
interpretation or foreign-language translation, the best that can
be hoped for are rules of thumb that only roughly characterize
some presumed procedure.

In summary, the usefulness of advisory systems depends on
their sufficiency and on the extent to which their functions
. match the needs of instructional developers. One view of
instruction is that of a designed object much like a computer
program or spacecraft oOn this view, advisory systems offer
considerable promise since it should be possible to capture
effective instructional design in a set of general principles and
mechanically apply those principles to create new instruction.
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Another view is that instruction is a product of evolution.
That is, as knowledge evolves so do the mechanisms for its
transmission. Some of these mechanisms are part and parcel of
the subject matter; others are cultural; still others are
genetic. On this view, the power of advisory systems is
definitely limited. The normal course of instructional
development is that of adopting and combining existing
instructional techniques, perhaps without reference to design
principles.

Generative Approaches

A different approach to the role of automation rests on the
observation that relatively stable instructional paradigms
characterize instruction in a number of areas. Troubleshooting
and foreign-language training are two examples taken up below.
Data entry, geography, and computer programming are other
promising examples. In each of these cases, a general paradigm
is configured to fit individual instructional applications. A
basic method for troubleshooting training is fitted to different
classes of devices. The same can be said for language training
and different languages, for computer programming and different
programming languages.

These cases offer the opportunity for automation to assist
in the generation of materials for broad subject areas.
Generative instructional tools already exist in a number
applications of computer-assisted instruction. In their simplest
form, they generate exercises for drill-and-practice of skills
such as typing and arithmetic. In more sophisticated form, they
generate instruction from an abstract representation of the
knowledge to be taught (Crawford & Hollan, 1983).

Generative approaches tend to be strong where advisory
approaches are weak. They can be tailored to the level of
generality achieved in the design that they implement. The
simple systems for generating exercises in arithmetic are clearly
suitable only for arithmetic. Systems like the IMTS (Towne,
Munro, Pizzini, Surmon, & Wogulis, 1988) offer instruction across
a broad class of troubleshooting domains, and systems such as the
CBMS (Crawford & Hollan, 1983) are limited not by the domain but
by the form of knowledge in that domain.

In contrast to advisory approaches, generative approaches
leave conceptual aspects of instructional design to a human
designer and take over the more routine chores of implementing a
design. The computer industry has met with considerable success
with this basic philosophy for assigning work to people and
machines. Generative systems, rather than ignoring the
evolutionary nature of instruction, can be tools for accelerating
that process. They provide a formal representation of an :
instructional design, one known to be explicit enough to support
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the mechanical generation of materials. These designs can be
refined, combined, and adopted to different needs. Changes in
the resulting instruction can be unambiguously traced back to
changes in the design itself. Design principles can be induced
and applied within the scope of admissible variations in the
design.

Two Proposals for Automated Generation of Instruction

To illustrate the potential for generative approaches to
automation and to make some general points about possibilities
for automating instruction, I describe in this section two
particular opportunities for a generative approach. The
applications chosen, foreign-language training and
troubleshooting, are intentionally quite different. The first is
meant to illustrate what might be done with a well-developed but
poorly understood instructional design. The latter is intended
to illustrate how general instructional principles, combined with

precise knowledge of a skill can be used for controlled,
automatic generation of a curriculum.

{an- Traini

A first example of the potential for generative approaches
to instruction is oriented towards the achievement of literacy in
a foreign language. The situation is of interest both because of
what is known about the subject and what is unknown.

- ining. Much of what
‘would be considered essential for instructional design in
foreign-language training is simply unavailable. By almost all
accounts, literacy in a foreign language is necessary and
sufficient for the ability to translate written material between
one's native tongue and the foreign language. Unfortunately, we
are far from a complete understanding of the mechanisms that
might be (much less are) responsible for translation skills. The
situation is bad enough that there is no precise standard for an
acceptable translation, and, for many texts, genuine disagreement
among experts.

Although we lack a precise model of foreign-language
literacy or translation skills, we do possess a rough intuitive
grasp of the major components of the process. Among these
components are

pattern matching to identify idioms and other common
expressions,

lexical translation to determine the possible senses and
roles of the individual words in the text,

syntactic analysis to determine the the text's phrase
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structure, and

semantic and pragmatic analysis to resolve lexical and
syntactic ambiguities.

Although the details of these processes and the
relationships among them are unknown, they serve as the basis for
the design of instruction in foreign languages. Typically
languages are taught through a sequence of distinct lessons each
of which addresses instructional goals relating to idioms,
syntax, and vocabulary. (These goals relate to the first three
components listed above. 'Training in the fourth component is not
provided on a systematic basis although students are usually
required to produce translations that reflect the meaning of the
original text.)

Lessons roughly conform to the canons of step theory. A
limited number of grammatical constructions are presented so that
the grammatical knowledge is built in a stepwise fashion. 1In
addition, texts are chosen that reflect only the vocabulary and
grammar under study or that covered in previous lessons.

Opportunities for Automation. In spite of the fact that
foreign-language literacy is only partly defined, there is

considerable opportunity for automation to assist in the
construction of curricula addressing this skill.

At the lowest level, computers could examine candidate texts
for each lesson and assemble vocabulary lists. The pattern-
matching capabilities of current text-analysis software is also
quite capable of identifying idiomatic expressions in text.
Hence, given the target text for each lesson, a computer could
take over much of the chore of constructing the vocabulary and
idiom sections.

More interesting is the possibility that computers could be
used to create, refine, or evaluate the syntactic content of
lessons. As was mentioned above, part of a typical lesson deals
directly with ore or a few syntactic components of the target
language. Computers are capable of mechanically generating the
examples needed to exhibit both well-behaved and irreqular
examples of the constructions under study.

More importantly, natural-language parsers are well-enough
developed that they could both generate and analyze texts to be
included in each lesson. Texts used in initial lessons must be
highly constrained and are usually generated by the teacher or
textbook writer to conform to the limited lexical and syntactic
skills of the student. These same constraints should also allow
computers to undertake the task of generating sample texts. 1In
later lessons, texts become less constrained and, at some point,
are drawn from the existing literature in the target language.
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In addition, the task of checking these texts for
conformance to instructional objectives becomes more difficult as
the students' repertoxre grows. Computers could be of
considerable value in analyzing candidate texts for their fit
into each lesson and even suggesting modifications to eliminate
vocabulary or constructions beyond the scope of the lesson.

Tools such as these could ensure not only that all objectives of
each lesson are covered but also that material going beyond the
lesson's objectives is excluded.

Finally, at the most abstract level, computers could assist
in the construction of a curriculum that systematically developed
the syntax of the language. In particular, it could draw on
research in computational linguistics and language learning to
develop the kind of procedural representation that VanLehn
developed of multicolumn subtraction. Armed with such a
representation, it could sequence the components of the
procedure, and create exercises and examples that corresponded to
the sequence.

Advantages and Disadvantages. I chose foreign language
training because it illustrates both the strengths and weaknesses

of the generative approach to automation of instructional design.

The possibilities discussed above are not revolutionary.
They suggest incremental improvements in both the process and
product of an existing instructional design. If that design is
fundamentally flawed (as it may well be for training in foreign-
language skills), then the mechanisms suggested above will be of
little benefit.

By the same token, the approach is wed to the domain of
foreign-language training. The computer programs that provide
the functions suggested above would be of no use outside of this
domain.

On the other hand, in this case where large gaps exist in
our knowledge of the target skllls, the generatlve approach to
automation provides some promise of improving on existing
practices. The development of programs such as those suggested
here would ease the development burden, provide improved
instructional materials, and sharpen our conceptions of how
instruction is generated within the general paradigm.

Moreover, although the approach suggested is not a
"universal instruction generator," its generality is well matched
to the domain. There may be some set of general instructional
principles that, in addition to suggesting the current design or
an improved one, will be equally specific and helpful in its
suggestions for history and automoblle-repalr curricula, but such
design tasks are far from automatic given the current state of
research on learning and instruction.
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o SNOo

Our interest in foreign-language training was based on the
existence of an instructional design applicable to a bounded but
usefully large set of specific instructional needs. A general
paradigm for troubleshootlng training also exists, but the the
paradigm itself is far less structured than that for forelgn-
language training. Typically troubleshooting training is device
specific. Students are, through lectures, provided with the
theory of operation of a device and perhaps some hands-on
practice manipulating the device. The heart of troubleshooting
training is a sequence of exercises in which students must
isolate a single specific fault in the device or a simulation
thereof. The faults used in these exercises are typically chosen
on the basis of their importance, and sequenced in order of
difficulty. Importance and difficulty are typically decided on
the basis of subject-matter experts' intuitions.

Our psychological knowledge of troubleshooting is far more
developed than that of language learning. The performance
requirements of the skill are well known, and we have a
reasonably complete picture of the cognitive concomitants of the
skill. It should therefore be possible to construct models of
particular troubleshooting tasks and use these models to select
and sequence exercises.

Troubleshooting Defined. Troubleshootlng, for our purposes,
is the identification of faulty components in malfunctioning
equlpment. Our view of equipment is deliberately simplified. We
view a piece of equlpment as a network of components. Each
component at any time is in one or a number of possible states.
Each of the components receives inputs from one or more other
components and delivers outputs to other components. Each of
these outputs is a function of the component's inputs and state.
Troubleshooters can observe some of the outputs and the states of
some components. They can manipulate the states of some
components (e.g., switches). Costs can be assessed for
observations, replacements, and panel manipulations.

In typical training situations, certain simplifying
assumptions govern the behavior of the equipment.

Every malfunction is the result of a single faulted

component, although in real equipment multiple faults often
occur.

Faults can be characterized as a change in the state or
possible states of a component, not in the topology of the
equipment, although in real equipment faults can change the
nature of the connections among components.

Neither testing nor replacing a component will fault another
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component, although in real equipment a faulted component
can protect another component from damage.

Finally, we assume that there are no faulty replacements,
even though real world technicians will on occasion return a
faulted component to inventory.

These restrictions are the ones traditionally used in
troubleshooting. training and in tests of troubleshooting
competence. I suspect that they are part of the maintenance-
training culture. Without them, many troubleshooting exercises
would be insoluble and many of the soluble ones would be
uninstructive.

In some settings, other simplifications may also apply. For
example, feedback loops may be eliminated, or components may be
limited to a single fault mode.

iv s of ing. Cognitively
oriented studies of troubleshooting are not new, however, it is
only recently that we have seen theories of skilled
troubleshooting sufficiently precise to support modeling of
individual performance.

One compelling account of troubleshooting skill is that of
Rouse and his colleagues (Hunt & Rouse, 1984; Rouse & Hunt, 1984;
Rouse, Rouse, & Pellegrino, 1980). A recent version (Hunt &
Rouse, 1984) of this group's theory holds that skilled
troubleshooters work with two distinct strategies. Both of these
strategies are represented as sets of rules that control the
focus of attention in troubleshooting, observation and
replacement decisions, and deductions made on the basis of each
observation's outcome. One set of rules, called T-rules,
captures device-independent troubleshooting expertise. These
rules match configurations found in the device to common patterns
which are, in turn, associated with troubleshooting actions or
decisions. Hunt and Rouse (1984) give the following example.

IF the output of X is bad and X depends on Y and Z and,
IF Y is known to be working, THEN check 2.

The rule potentially applies to any three components of the
device that match the rule's condition.

A second strategy is embodied in rules called S-rules that
capture device-specific trouble-shooting skills. S-rules match
to specific patterns of observations in the device rather than
general configurations of components. Rouse and Hunt suggest the
following S-rule for troubleshooting automobiles.
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IF the engine will not start and the starter motor is
turning and IF the battery is strong, THEN heck the gas
gauge.

Both S-Rules and T-Rules are local in scope. That is, their
conditions contain no information on the overall impact of
applying the rule. For example, the T-Rule given above might
match a part of the device that contains fairly little
information (in the information-theoretic sense) about the
fault's location and also to a pattern containing a great deal of
information about the location of the fault. All other things
being equal, troubleshooters should, and do, choose the latter -
configuration. Rouse and Hunt found it necessary to account for
this effect by conditioning the rule selection process on each
rule's usefulness. Towne, Johnson, and Corwin (1983) also found
that observations are chosen largely on the basis of their
information value.

The work discussed above can be summarized in the conclusion
that skilled troubleshooters base their troubleshooting decisions
on three aspects of the troubleshooting situation:

device-specific associations between symptoms'and faults
device-independent configurations of components, and

the information-theoretic value of potential decisions.

One final result worth mentioning concerns the generality of
trouble-shootlng skills. Higher-level cognitive skills have been
found to be generally resistant to transfer, but the results
described in Rouse and Hunt (1984) indicate that if students are
taught to troubleshoot a variety of different systems, they will
have an advantage in learning to troubleshoot a new system. Two
factors, I believe, were critical to this finding. First, Rouse
and his colleagues knew where to look for transfer in the sense
that device-independent techniques (T-rules) are known to operate
in the training and transfer domains. Second, the successful
transfer experiments provided training in more than one domain,
thus conferring an advantage on device-independent skills during
training.

Qgm2B;g::AiQgQ_Qgng:aL;Qn_gI_Irggblsgnggslng_ggrr;gglg. The
foregoing suggests that troubleshootlng tralnlng can have either
or both of two distinct objectives. Some individuals (consumer
electronics technicians, for example) may need training in device
1ndependent troubleshootlng techniques. Others (advanced
avionics technicians, for example) will need training in device-
specific skills. The training techniques for these two
objectives will be different, but computers can help in each
case.
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In this section, we suggest principles for selecting and
sequencing troubleshooting problems (as exercises and examples)
and the role of computers in implementing these principles.

1. Teaching General Troubleshooting Skills

The results cited above indicate that general
troubleshooting skills should be taught by using problems drawn
from a variety of devices with a variety of structures. The
problems should be selected to promote cognitive skills
corresponding to the three strategies listed above:

pattern-recognition skills that enable troubleshooters
to identify simple configurations of components,

skills in identifying the appropriate troubleshooting
action for each of the patterns identified, and

device-comprehension skills that allow students to
choose the most information-laden observations.

With certain extensions, current models of troubleshooting,
such as that of Hunt and Rouse, could be used to provide specific
definitions for each of these skills. The main stumbling block
to achieving such a model at this time is the lack of a suitable
representation scheme for devices. Both intuition and evidence
from studies of cognitive structures - indicates that
troubleshooters represent devices in terms of a hierarchical
decomposition. Such a decomposition makes device comprehension
manageable and almost automatically leads the troubleshooter to
the most information-laden observations. Also, to the extent
that the device is designed hierarchically, a decomposition may
be evident in its documentation.

. The task of creating a curriculum of problems is one of
finding the principles that apply to this situation. Note, for
example, that the learning situation envisioned here is subject
to the same sources of difficulty that VanLehn found in
multicolumn subtraction. Both the pattern-recognition and
device-comprehension skills involve disjunctions (choice points),
and unobservable intermediate results (the choice of a pattern)
are involved in every troubleshooting decision. This suggests
that problems be grouped into lessons that reflect the stepwise
development of pattern-recognition and device comprehension
skills and that some method be used to exhibit the intermediate
results required to make each troubleshooting decision.

The availability of a psychologically valid model of device-
independent troubleshooting skills makes it possible to represent
the design requirements for the curriculum in formal,
computational terms. Thus, a computer could be used to candidate
problems for each lesson that meet the stepwise refinement
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requirements of the lesson. Furthermore, given a suitable way of
displaying the results of intermediate results, computers could
generate materials that would show students otherwise
unobservable steps in the troubleshooting process.

The system sketched above could not, in itself, completely
automate the generation of instructional materials. For one
thing, the system would not generate a unique curriculum, and
developers would need to choose among those available. 1In
addition, giving a nod to proponents of situated cognltlon, some
effort should be made to situate the abstract problems in
realistic scenarios. Finally, it might be wise to include a
verbal description of the troubleshooting procedure and its
basis.

2. Teaching Device-Specific Troubleshooting Skills

Device specific troubleshooting skills are those that rely
on recognition of specific patterns of device behaviors, such as
the pattern exhibited in the S-rule provided above. The research
discussed above indicates that these recognition skills tend to
develop naturally as students become familiar with the devices.
Of interest here are the possibilities that training can
accelerate the acquisition of device-specific strategies and,
more importantly, selectively promote the acquisition of more
effective strategies.

The key to realizing these training goals is to develop a
specific set of device-dependent strategies; determine the
troubleshooting procedure (typically a discrimination net) that
best implements the strategies; and devise a curriculum targeted
to that procedure. Computers can help in a number of ways.

Computers can generate alternat1ve dev1ce-spec1f1c
strategies.

Computers can evaluate the relative utility of a device-
specific strateqgy by comparing its cost to that of its
device-independent counterpart.

Computers can evaluate an entire set of device-dependent
strategies by inducing the troubleshootlng procedure needed

to implement the set and assessing the complexity of the
procedure.

Computers can generate the sequence of problems that will
most effectively teach a device-dependent troubleshooting
procedure.

3. Keys to Generative Curricula
We can summarize the suggestions made above by recapping the
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philosophy behind automated generation of troubleshooting
curricula. Automation becomes relevant in this case because of
the potential for formally representing the space of
troubleshooting problems in a way that reflects the knowledge
requirements of the skill. It is under these circumstances that
instructional design principles, such as show-work, shed their
vague character, and become tools for automatic curriculum
generation. In both of the cases discussed above, we envision a
system that, working from a procedural representation of the
target skills, creates a sequence of troubleshooting lessons.

The first lesson would start with the simplest case. Subsequent
lessons would add refinements to the procedure, one step at a
time, by introducing problems ‘that exercise the use of the target
refinements. In addition, for each problem generated, the
computer would provide a trace of each problem's solution. These
traces could form the basis for implementing the show-work
principle.

The important point of this example, however, is not the
extent to which instructional development is automated but the
nature of the automation and its prerequisites. Required are a
formal and psychologically valid model of the troubleshooting
process and instructional principles that can be applied to the
model. The result is a curriculum guaranteed to conform to the
principles. This guarantee cannot be met if one of the three
components -- formality, psychological validity, or instructional
principles -- is missing.

iv ? The two examples
presented here are, by design, quite different. The foreign-
language example shows that automation has the potential for
generating and evaluating materials even when the target skill is
not well specified. The opportunity for automation in this case
is the existence of a well-worked out instructional design whose
components can be matched with formal cognitive representations
of the material needed to implement the design.

The second example, troubleshooting training, by contrast
suffers from a weak instructional design and fairly complete
knowledge of the skill itself. In this case instructional
principles can be put in correspondence with a formal cognitive
model of the target skill in order to produce a curriculum.

Thus, to the extent that we accept the promise in these
approaches, it appears that there is no one set of conditions
that make a generative approach attractive. The strength of the
generative approach is its ability to achieve uniformity within

its area of application. 1Its application to any one area may be
almost completely ad hoc.

' I suspect that the ad hoc nature of this approach has to do
with the nature of instruction in general. 1In both of the
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examples above, some formal representation of cognition gn the
target area corresponded to some set of instructional principles
or methods. Since I see no prospect for a uniform, formal
interface of all instructional methods to all domains of human
knowledge, opportunities for generating instruction with
computers will remain a matter of judgement and intuition.

conclusions

. The discussion above has pointed out some of the
opportunities for and limitations on automation in instructional
design.

In our discussion of theory, we saw that conceptions of
instruction have developed from a mechanistic learner-centered
approach to one that recognizes the importance of cultural
mechanisms in both the acquisition and exercise of skill. The
picture that emerges of the instructional enterprise is one more
of evolution than design. The methods for transmitting knowledge
are part and parcel of the knowledge itself. As a bit of
knowledge changes, interacts with other bits, and assumes
different forms in different contexts, the instructional methods
that keep the idea alive will change in corresponding ways. (See
Dawkins (1976) for a discussion of related ideas.)

The implications of this view for the instructional design
‘community are relevant to the question of automation. The
effectiveness of top-down instructional design methods is not at
issue; they clearly work when applied appropriately in the
appropriate situations. What is of interest is the reason for
their effectiveness. I contend that the key to their success is
the human designer, who can interpret general recommendations in
specific contexts. Because humans can appreciate the
dependencies among different aspects of a domain of instruction,
and because they can work out the implications of these
dependencies for an instructional design, the presence of people
in the loop guarantees that the complexity and variety of
instructional designs will be sufficient to meet the complexity
and variety of domains to be taught.

Computers, however, have none of the context needed for
effective design of instruction. The uniform, general
implementation of a body of instructional design principles in a
computer, would require a uniform, general method of representing
all that might ever need to be taught. Also needed would be an
interface between this representation and the body of
instructional design principles. Neither of these components is
within the grasp of current approaches to knowledge
representation.

These conclusions lead us to some particular recommendations
regarding automation in instructional design.
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Computers Should Make Things Better or Easier

The appropriate use of computers is for tasks that humans do
poorly or with some difficulty. We have suggested above that
one such class of tasks is the generation of large amounts of
instructional materials that must, by design, conform to complex
specifications. To the extent that those specifications can be
formalized, a computer can be used to automate the process.

Other opportunities for automation exist in roles supportive
of the instructional design process. These include document
processors, authoring systems, data-analysis programs, and
automated retrieval of reference materials, to name a few. One
could even envision an automated procedural guide to the
instructional design process that would track the design as it
developed and make suggestions for completing the design.

Not useful would be any tool that pre-empted design tasks
that could be done better and more easily than an unassisted
human developer. A program that insisted on wending its way
through a complex set of design rules and principles on the
pretext of actually creating a design would, for reasons cited
above, be a counterproductive use of computers.

Build Existing Inst tional Knowled

If, as I propose above, instruction develops more by
evolution than by design, it would be a serious mistake to
provide computer support for one design approach without
examining the potential for supporting other approaches. Many
courses developed today are, either explicitly or implicitly,
derived from other similar courses. This imitative approach to
design may be inappropriate in some instances, but in many cases
(and not just in instruction) it is the most effective route to a
new design. More than passing attention should be given to
automation efforts(like the projects suggested above) that
support the adaptation of a design to many different
applications. Not recommended would be a commitment to support
with automation only those design efforts that conform to a top-
down ISD process.

; Lity i !

The instructional design community has made no bones about
its commitment to offering guidance on the development of every
sort of instruction. This commitment to generality is laudable
on general grounds and makes particular sense in the context of
instructional design. One reason for embracing generality is
that one never knows what scrts of instructional mechanisms will
be needed until the design process is well underway. The general
stance is also a welcome contrast to typical efforts in other
research communities. More often than not educational research

28




deals with effectiveness of a single mechanism in a single, often
artificial context. Real instructional problems are only solved
with a combination of instructional techniques. One of ISD's
major strengths is its ability to help designers assemble and
configure a variety of mechanisms to meet particular
instructional needs.

However, the goal of generality in the design process itself
is not necessarily a recommendation for generality in automated
support for instructional design. Todays computers are simply
not equipped to make many of the judgements needed to create an
effective design. They can offer support for selected tasks in
the design process and they can participate, in certain cases, in
the generation of materials. Those interested in supporting
instructional design with computers should pitch the level of
generality of their efforts to those appropriate for the tool
being developed, not at the level of generality of the design
effort itself.

It is my hope in this chapter to have introduced some
moderation and humility into efforts at automating instructional
design. It may help to recall that we, almost without knowing
it, are the consummate teachers and students of the animal
kingdom. We have, depending on how you count, several million
years of collective experience in teaching and learning from each
other. Nearly every communicative act among us has some
instructional aspect. Hence, it should come as no surprise that
we face some difficulty in expressing our knowledge of
instruction in the precise, formal terms needed for computer
implementation.

In the next chapter, however, I shall attempt to sketch two
spec1f1c ways that instructional design expertise may come to
reside in computer-based systems. The two systems I shall
outline are as divergent as the two approaches to automating
instructional design described in this chapter, although both
represent generative approaches to the problem, and, as a
consequence, are genuine possibilities to pursue.
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III. AUTOMATING INSTRUCTIONAL DESIGN AND DEVELOPMENT (Halff)
Introduction

This paper is about instructional design and development,
its implementation in different contexts, and opportunities for
its automation. I begin by describing a general conception of
instructional design, development, and delivery. This conception
(called the AIDA concept) is nothing more than a simplified
description of current thinking about instructional design. The
AIDA concept was developed to guide development of automated
tools for instructional development and design.

(AIDA is the name of a Egyptian slave and gifted soprano,
who was buried alive with her lover Rhamades. In more recent
times, the term is used to refer to an Automated Instructional
Design Assistant. It is too soon to tell whether the modern-day
AIDA will meet the fate of its ancient namesake.)

My main intention is to examine how the AIDA concept applies
in particular instructional development contexts and to suggest
how the Concept could be most profitably automated in those
contexts. This paper pursues that intention by elaborating the
AIDA concept in two specific instructional development contexts
(one real, one fictional). The discussion of each context
includes a thumbnail sketch of its main characteristics, a
description in terms of the AIDA concept, and suggestions for
appropriate automation of the Concept.

As will be seen, certain important differences between the
two contexts have a critical influence on the automation of
instructional design within each context. By way of conclusion,
I summarize these features and discuss their impact on further
development of AIDA.

The AIDA concept

The AIDA concept, illustrated in Figure 5, is a description,
in information processing terms, of instructional design,
development, and delivery currrently being proposed as the high
level AIDA architecture. A summary of the figure may help orient
the reader to the following, more detailed account.

In this system, there are two primary inputs to the
instructional design effort:

SET =-- information about Students, the learning
Environment, and the Task(s) to be mastered, and

Content -- a specification of the material to be mastered
by the students.
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These two inputs are submitted to the AIDA Executive, a
central component of the AIDA concept. The Executive is a
function that maps the space of (students} X (environments} X
(task) X (content) into a set of instructional strategies.

These strategies are not complete instructional regimes, but
rather procedures that are executed or interpreted to provide
instruction.

Instructional delivery, the ultimate output of the AIDA
concept, is the process of running the instructional strategy to

deliver instruction to the student.

The AIDA concept (designed, as it was, by a committee) is a
weak one, embodying only the most fundamental principles of
instruction:

that instruction should be sensitive to students, the
learning environment, the task to be learned, and the course
content,

that some level of abstraction is possible in the design of
instruction, and .

that effective instruction must eventually find its way to
the student.

Therefore, further specification is required before any
serious use can be made of the concept. The bulk of this section
discusses the major issues associatéd with the components of the
AIDA concept and the interrelations among them.

Students
Environment AIDA Content
Task Executive

Instructional
Strategies

instructional
Delivery

Evaluation

Figure 5. The AIDA Concept
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The Content Component

In describing the Content component, we need to ask about
the function of the component, about its structure, and about ‘the
practices used in particular instructional situations. All three
of these issues are problematic.

A naive behavioristic view holds that content is nothing
more than a description of the tasks that students should be able
to perform as the result of training. Views informed by
cognitive science, however, see the futility of this approach for
all but the simplest of instructional situations. Most
instructional developers now view course content more in terms of
what students are to learn.

The switch from a behavioral to a cognitive perspective-
provides two advantages. First, it allows one to precisely
represent complex instructional objectives, for example, that of
recognizing a well-formed chemical formula. Second, it
incorporates into the instructional design process, the
specification of the intermediate cognitive structures that
support skilled performance. For example, a behavioristic
specification of the content of a troubleshooting course might be
nothing more than a list of symptoms and appropriate
troubleshooting actions (tests and replacements). A cognitive
representation would include specifications related to
interpreting block diagrams, selecting tests, and refining
hypothesis lists.

Unfortunately, the more ambitious one is about the function
of the Content component, the more difficult and complex are the
problems of specifying its form and implementing that
specification. Most instructional designers seek a language-like
representation of instructional content in which structure
(syntax) is clearly separated from content (semantics). This
separation finds its advantage in principles of instructional
design that operate on the structure or syntax of the content
without having to worry about the content or semantics. In
practice, the representation of content is even further
constrained by instructional-design considerations. Most views
of instructional design (e.g., Gagne and Briggs, 1979) require a
content representation in terms of instructional objectives that
can be matched to corresponding instructional methods.

Once the function and form of the Content component have
been adopted, there remains the issue of actually representing a
particular content area. Neither the cognitive science community
nor the instructional design community has had much success in
devising powerful, uniform, broadly applicable methods for
inducing the cognitive structure of a skill. What we have
instead is a grab-bag of empirical and formal methods with only
the roughest of intuitive guidelines as to their use. A
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reasonably sharp cognitive or instructional scientist can
usually, by dint of intensive effort, create a cognitive
representation of a skill. However, another individual would
probably arrive at a completely different analysis, and no one
would find either of their analysis to be of much help in
conducting an analysis of a different type of skill. The most
hopeful statement that one can make is that skills may come in
families, for example, electronic troubleshooting, foreign-
language learning, and computer programming. Analysis of the
family as a whole may yield significant dividends over separate
analysis of individual members.

The following critical points summarize the foregoing
discussion:

Content must be represented in a generative, cognitive form.
It is a competence model and must, of necessity, identify
the mechanisms whereby competence is to be achieved.

Instructional design methods place non-trivial constraints
on the form of the Content component. They require that
syntax or structure be separable from content or semantics.
They also require the explicit representation of
instructional objectives in the Content component.

Even within these constraints, there are no uniform methods
for analyzing particular skills. Some skills may, however,
fall in families that admit to a common structure.

e T C onent

The SET component represents information about Students, the
learning Environment, and the target Tasks. Different
conceptions of the structure of this component lead to different
approaches of the instructional design process.

The simplest conception of the SET component is that of a
fixed, finite-length list of features that describe certain
aspects of the students, instructional environment, and target
tasks. The list might include level of motivation (a student
feature), availability of laboratories (an environment feature),
and availability of job aids (a task feature). The feature list
could be quite long, but only a fraction of its members would be
relevant to any particular design.

The feature-list approach to SET leaves much to be desired.
In particular, it does not allow for use of content-specific
aspects of students, the instructional environment or the task.
Not represented in a fixed feature list, for example, are the
student's level of mastery of particular objectives, the
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availability of equipment for practicing particular parts of a
skill, or the frequency with which particular operations are
encountered on the job. Accommodating this information would, at
the least require an overlay approach (Carr and Goldstein, 1977),
whereby SET features are represented in a structure isomorphic to
that of the Content component. Thus, if the AIDA Concept is to
produce instruction sensitive to particular student knowledge and
competence, particular training opportunities, and particular
task characteristics, the SET component must be dependent on the
Content component.

Also problematic is that aspect of the SET component that is
innocuously labeled "task." As originally conceived, this aspect
of the SET component specifies the goals and behavioral
objectives of the skill to be learned. It therefore forms the
basis for the content analysis described above. In most cases,
the task may itself have a complex structure, one that is imposed
on the Content component.

The relationship between students, tasks, and content can be
even more complex. Consider, for example the following three
situations:

1. Students proficient in the maintenance of avionics
systems in general are to be trained to maintain the
avionics of the F-22, the Air-Force's latest fighter.

2. Students not proficient in the maintenance of avionics
systems in general are to be trained to maintain the
avionics of the F-22.

3. Students not proficient in the maintenance of avionics
system are to be trained in to maintain the avionics of the
F-22 in such a way that they also acquire skills helpful in
or sufficient for maintenance of other avionics systenms.

These three cases, in which the primary instructional
objectives are ostensibly identical, each call for vastly
different representations of student knowledge, task definition,
and content knowledge.

To summarize, the separation of SET from Content shown in
Figure 1 may be misleading. Whenever content-specific aspects of
the students, environment, or task play a role in the
instructional design, the SET component will acquire a structure
derived from the Content component. Conversely, material in the
Content component may, in part, derive from the structure and/or
content of the task description. Thus, in some instructional
designs, the SET and Content components will be functionally
independent; in others they will be so closely related as to be
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inseparable; and one can envision the full range of possibilities
between these two extremes.

Instructional Strategies

An instructional strategy is a procedure for teaching a
single objective. It is abstract in that it is general over the
class of objectives to which the strategy applies. It takes, as
data, student characteristics and the material that defines the
particular objective. It produces, as output instruction to be
dellvered to the student.

A couple of examples may help make the concept clear.
Figure 6 (below) presents a strategy for teaching a serial, non-
branching procedure. Note that it is applicable to any serial,
non-branching procedure. (However, I make no claims for its
effectiveness or even the adequacy of the representation.)
Figure 7 (below) illustrates a strategy for teaching computer
programmers how to use a primitive of a new language when a
corresponding primitive of an old language is available. Both
strategies are general. However, that of Figure 6 is applicable
to a wide range of domains; that of Figure 7 is applicable to one
domain and only in particular circumstances. The strategies
employed in most curricula are a mix of general and domain-
specific strategies.

Also worth noting here is that the strategies. in Figures 6
and 7 make no commitment to media or other aspects of the
training environment. Depending on the interpretation of terms
such as elicit and exhibit, one could execute these procedures in
a classroom, in a laboratory, or on the job.

The representation of instructional strategies is a critical
issue for ISD in general and for the AIDA Concept in particular.
To appreciate the enormity of the problem, it is helpful to
remind ourselves that a complete representational theory of
instructional strategies must accommodate both the vast range of
material that can be conveyed through instruction and the vast
range of mechanisms available for conveying material.

As Merrill (1989) points out, the instructional design
research community is of two minds on the nature of strategies.
The conventional approach, which he calls "ID-1," is based on a
set of universal instructional primitives that can be composed
into strategies. One primitive, for example, might produce a
verbal statement of some aspect of the material. Another might
generate and exhibit an example. Others might query students in
particular ways.
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OBJECTIVE

Error-free execution of a serial,
non-branching procedure
STRATEQGY

Inform the student of the nature of the objective
Exhibit the entire proceudre

For each step, N,

Repeat until success
Exhibit steps 1to N
Have the student execute steps 1 to N
Success is error-free execution

Figure 6. Instructional Strategy -- Non-Branching Procedure

OBJECTIVE

Use of a programming primitive, p, -
in a new language, L

PREREQUISITE

Use of the corresponding primitive, p’,
in an old language, L’

STRATEGY

Exhibit the syntax and function of p
Exhibit the relationship of p to p’
Exhibit a procedure in L’ using p’' and
the corresponding procedure in L
Exhibit a program in L' using p’ and
elicit the corresponding program in L
Exhibit a programming assignment in L that
requires the use of p and elicit the solution

Figure 7. Instructional Strategy - Language Primitive
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One might argue that the strategy illustrated in Figure 7 is
nothing more than a specialization of some domain-independent
strateqgy. A proponent of this argument, however, would be
obligated to exhibit the operations that permit some strategies
to be represented as spec1allzations of others. She would also
be obligated to show, in this case, which generalization of the
strategy in Figure 7 is most useful in designing computer-
programming instruction.

Merrill (1989) and I (Halff, 1989) have pointed out that an
approach based on primitives leaves much to be desired.. In the
first place, the set of primitives is open ended; there is no
principled way of generating a unique, or even a canonical set.
Second, effective instruction incorporates complex constraints
among instructional primitives as they are assembled into
strategies. A teacher, for example, may refer to particular
exercises in a textbook. Exercises and examples in most
curricula are subject to sequential constraints (VanLehn, 1987).
Interactive instruction also appears to be governed by complex
relations among individual instructional primitives (Collins &
Stevens, 1982).

Needed, therefore, to compose primitives into strategies,
are not only the mechanisms for selecting the primitives but also
ways of representing procedurally all pertinent constraints among
them. Needed, therefore, is nothing less than a generative
grammar of instruction. Although it may be possible to write
such a grammar for particular objectives or fixed set of
objectives, to actually write one for an interestingly large
class of domains is well beyond any foreseeable advances in
instructional design. This is not to say that skilled
instructors do not or cannot implicitly exercise such a grammar
in the course of designing instruction.

Rather than dealing with instructional primitives, it
therefore seems more promising to collect and implement
instructional strategies as integral, black-box units, which
Merrill (1989) calls transaction frames, a term that I will
continue to use. On this approach, strategies can be tailored to
individual situations in specific, ad hoc ways, but they cannot
be disassembled, transformed, and reassembled. Once configured
to a particular 1nstructlona1 purpose, transaction-frames become
special-purpose procedures called simply transactions.
Transaction frames or black-box strategles as black boxes can be
viewed as cultural products, subject to the methods and
principles of natural science. Even if they cannot be generated,
they can be collected, classified, studied, and used.

What one gains from the transaction-frame approach is
feasibility. What one sacrifices is generality. By simply
collecting all of the transaction frames appropriate to an
objective or domain, one can ensure effective instruction for the
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objective or domain. There is no principled way of applying the
products of this exercise to another domain. Different .
objectives will almost certainly require different transaction
frames, and some, all, or none of the instruction frames
appropriate to one domain could be useful in another.

Neglected in the current conception of AIDA is the notion of
a curriculum, the collection of strategies that generate a course
of instruction. I mention it only in passing here, noting that
the problems that arose at the strategy level arise also at the
curriculum level. Curricula must reflect complex, often ad hoc,
constraints among strategies. The two general approaches to
representing curricula are (1) a generative grammar in which
strategies are lexical items or (2) ad hoc existing schemata that
dictate the configuration of strategies in a curriculum. (See
Reigeluth and Stein (1983) and Gagne and Briggs (1979) for
suggestions regarding the first approach.)

In summary, we have been concerned with the instructional
strategies that constitute procedures for delivering objective-
specific instruction in the AIDA concept. Strategies might be
represented by a generative scheme based on a fixed set of
instructional primitives and a grammar expressing the structure
of strategies. A more feasible alternative views strategies as
black boxes (transaction frames) that can be tailored on an ad
hoc basis to meet particular instructional objectives. The
generative approach has the advantage of providing a complete,
principled approach to strategy representation but is infeasible
for general instructional design purposes. The transaction-frame
approach is potentially labor intensive and not based on explicit
principles but it does offer extensibility to almost any domain.

The AIDA Executijve

The task of the AIDA Executive is, in brief, to analyze any
of a broad range of Content and SET and to produce a set of
procedures that will effectively teach the material. The Content
can can be represented in any number of ways: semantic nets,
production systems, uninterpreted text, and neural networks, to
name a few. The procedures created by the AIDA executive must be
able to transform these various representations into forms
suitable for consumption by students, human instructors, and
mechanical teaching devices.

' The.procedures must also, when run, provide effective
instruction. The AIDA executive therefore has a problem somewhat
more challenging than that of software design, and the central

issue in the design of the Executive is how to meet this
challenge.

4 What makes the task feasible are constraints on the
representation of both the input to and output from the AIDA
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Executive and a judicious division of labor among the
subcomponents of the Executive:

The content is represented by a grammar that parses the
subject matter into objectives.

Instructional strategies are ‘either generated or selected
and matched to objectives.

The strategy is configured to the content by filling slots
for content-specific material.

The strategy is configured to the student(s) and the
training environment by filling slots with corresponding
information from the SET component.

Thus, the the Executive's success lies in properly
structuring the Content and SET components and providing a
workable set of strategies. If strategies are generated from
instructional primitives, then the Executive composes each
strategy by exercising the generative grammar in the context of
content and SET specifications. If strategies are based on
transaction frames, then the Executive selects the frame and
configures it according to content and SET specifications.

s i eliv

The reader at this point may ask why the AIDA Concept makes
reference to strategies at all. Why not connect the AIDA
Executive directly with the student by making it responsible for
instructional delivery? The answer to this question lies in the
need for interactive instruction. Because instruction is )
generally interactive, the product of an instructional design
must have a procedural representation. That is, it must be
represented as a strategy.

This said, it behooves us to consider the nature of
interactivity in instruction. Current instructional design
methods can be classified into one of a small number of levels of
interactivity:

Some forms of instruction are non-interactive.

Uninterruptable lectures, films, and other presentations are
of this sort.

Most forms of instruction offer at least a moderate level of
self pacing. Students can decide when to turn the pages of

a text or can proceed through the steps of a laboratory
exercise at their own pace.
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Most forms of instruction offer some sort of local feedback.
The practice of many skills (e.g., bowling) automatically
provides information about performance.

Some forms of instruction offer local interactive control
over the curriculum. The branching strategies used in most
computer-based instruction are of this sort. I use the term
local here to indicate that branching decisions in this type
of instruction are context free.

Qualitative simulations such as STEAMER (Hollan, Hutchins,
and Weitzman, 1984) are examples of instruction that reach a
context-sensitive level of interactivity. The response of
such systems to student actions is a complex function of the
evolving instructional context.

Some forms of instruction are conversational. They rely on
strategies that query, inform, and listen to students in
natural language or a medium of equivalent power and
complexity. Classroom and tutorial discussions are prime
examples of this level of interactivity. These forms of
instruction are not only context sensitive, but also
incorporate some form of planning and abstraction of the
instructional context.

These levels roughly delineate the information-processing
requirements of the instructional delivery mechanism(s). Self-
paced instruction, for example, need only be able to determine
when to undertake the next step in an instructional procedure,
based on input from the student. The mechanism for delivering
conversational instruction, on the other hand, must have the full
power of natural language, that is, something beyond the
expressive power of a context-free grammar.

Also important is the interface between the instructional
delivery mechanism and the curriculum. Instructional delivery
systems that embody complex instructional procedures can operate
with high-level representations of the curriculum. Competent '
human instructors, for example, can convert general written
guidelines for a classroom discussion into a complex procedure
for conducting the discussion. Strategies for computer delivery
need to be written in machine-interpretable form. Some forms of

instruction such as text and (uncoached) batting practice need no
interpretation at all.

In summary, the design of an instructional delivery system
must take into account two types of information-processing
requirements. First, the level of interactivity with students
will impose information-processing demands on the delivery
system. Second, the delivery system must be able to interpret
strategies in the form provided by the AIDA Executive.
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Evaluation

Evaluation is commonly viewed as being either summative or
formative. The distinction serves us well here even if we take
some liberties with their definitions:

Summative evaluation is scientific enterprise designed to
test the assumptions underlying the instructional design.

Formative evaluation is an exercise in optimization,
designed to determine the best values for unknown parameters
of the instructional- design.

In most applications, a third aspect of evaluation, quality
control, is also required:

Quality control assesses the conformance of the
instructional design and delivery process to its
specification.

That these three types of evaluation are interdependent is
obvious but often overlooked in practice. A formative evaluation
cannot be done until guality-control issues have been resolved.

A summative evaluation is meaningless unless the instructional
system has been optimized through a formative evaluation.

Quality control. Quality control is based on a
specification of system outputs under a particular configuration,
without regard to whether that configuration is the optimal or
whether the underlying assumptions behind the system are valid.
Quality control is achieved when the actual system outputs
conform to that specification. Within the AIDA Concept, quality
can be assessed by determining the extents to which:

information provided for content analysis is properly
converted to a content representation,

information provided about students, the training

environment and the task is properly represented in the SET
component,

the AIDA Executive produces specified curricula from SET and
Content information, and

the instructional delivery mechanism faithfully executes the
procedures produced by the AIDA Executive.
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Quality can be assessed in controlled experiments or by
natural observation. An appropriate experimental technique for
assessing quality relies on the use of a validation suite, a set
of standard inputs and outputs known to conform to the system
design. Natural experiments for quality evaluation within the
AIDA framework are more difficult to design since, in a natural
setting, the true values of intermediate stages are unknown.
Nonetheless, it may be possible in particular cases to devise
indices and standards for quality that are not contaminated by
uncertainty in the parameters of the systemn.

In evaluating quality, it is also important to keep in mind
the difference between general, system-related problems and
special problems only manifest under certain circumstances.

These two aspects are commonly separated by observing system
performance under a variety of circumstances. Since special
problems in AIDA will almost always be manifest as human error,
thorough quality testing calls for observing system behavior with
a number different designers, instructors, and other human
elements. : _

Formative evaluation. Formative evaluation is a technique
for optimizing system performance under conditions of uncertainty
about the system's parameters. Therefore, to understand how
formative evaluation might function in the AIDA concept, we need
to examine sources of uncertainty in system characteristics.
Among such sources of uncertainty are the following.

Indeterminacy in the derivation of content from task. Data
from a content analysis will often be insufficient to
uniquely determine the cognitive structures that support
competent performance. At these junctures, the content
analyst makes an arbitrary decision which may have
downstream consequences for instruction.

Nonidentifiable parameters of students and environment. It
may be theoretically impossible to determine the values of
some student or environment parameters at the time of course
design and development. Typically some arbitrary choice is
made which may, like arbitrary content decisions, have
downstream consequences for instruction.

Simplifying assumptions to remove variance. The
distributions of students and training circumstances are
often unknown at the time of training development. Even if
they are known, it is usually infeasible to optimize a
design for the entire distribution of possibilities.
Typically, then, the designer simplifies the problem by
designing for a typical student and typical circumstances.
The performance of the system may degrade so in nontypical
clrcumstances that this simplification is not warranted.
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Arbitrary assignment of strategy to objective. The mix of
strategies used to address an objective is often the result
of intuition or isolated empirical results. Strategies
other than the ones chosen may, in fact, provide better
instruction.

Arbitrary cost-effectiveness decisions. During design, and
particularly during delivery, decisions may be made to
sacrifice effectiveness for costs savings (or vice versa)
without complete knowledge of the tradeoff function. Such
practices will often lead to suboptimization of overall
cost-effectiveness. .

Indeterminacy is assessing student characteristics during
instruction. Much interactive instruction relies on
assessment-instruction feedback loops in which instruction
is tailored to the results of a particular assessment.
Procedures for both testing and scoring these instruments
may constitute sources of uncertainty.

Formative evaluations have three components. First,
specific sources of uncertainty are identified. Second, a
sensitivity analysis is conducted to determine which of the
identified sources has an effect on instruction. Third,
experiments are conducted to evaluate different approaches to the
sources that pass a sensitivity criterion.

Formative evaluation is difficult. An inspection of the
partial list above indicates the difficulty of even identifying
sources of uncertainty. Typically, instructional designers
encounter enough difficulty in arriving at one viable set of
assumptions that consideration of alternatives is not possible
within the resources allotted to the development. Nonetheless,
where difficult and potentially critical decisions are made, the
three component process can help in selecting the best choice.

Summative evaluation. Summative evaluation can be used to
identify where instruction or instructional designs produced
under the AIDA Concept meet or fail to meet expectations. A
summative evaluation can be as simple as a criterion-referenced
test given to students. However, one can envision more thorough

summative evaluation designed to assess all stages of the AIDA
Concept:

Pretests of students and empirical observations of the

training environment can be used to evaluate the validity of
the SET Component.

A number of techniques (Anderson, 1988) from cognitive
psychology can be used to assess the validity of the Content
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component as a model of competence.

on occasion, learning models will be available to test the
effectiveness of instructional strategies in particular
cases, but, as I have pointed out elsewhere Halff (1989),
opportunities for this sort of assessment are limited.

Finally, the effectiveness of instructional delivery can be
evaluated by tests of student's behavior.

The evaluation model described here serves to illustrate two
general points about evaluation.

Performance deficiencies can result from several causes.
Implementation can fail to meet design specifications. The
design can be suboptimal. The assumptions underlying the design
can be in error. Because different remedies apply to these
different problems, an effort should be made to separately
evaluate their contributions to system performance.

Performance deficiencies can arise at any stage in the
development process. For this reason, evaluation efforts should
provide information, not only on the nature of problems but also
on their specific locus within the AIDA Concept.

No matter how extensive the evaluation effort, these points
cannot be ignored. The value of any evaluation instrument lies
in its potential to deliver precise information on the cause and
locus of deficiencies in the design and development process.

critical I for AI

The foregoing material presents a rough description of the
AIDA Concept and delineates the issues critical to its
implementation in any context. Before turning to context-
specific considerations, a review of these issues is appropriate.

content. The Content component is a cognitive model of what
is taught. It has both structural, syntactic aspects and
content, semantic aspects. Critical is the syntax governing the
structure of course content and, in particular, the extent to
which that structure is constrained by instructional
considerations. Also critical are the methods used to determine
and represent the semantic aspects of the Content component.

SET. The SET Component represents information about
students, the instructional environment, and the task being
taught. The overriding issue in the design of this component is
its relationship to the Content Component. The structure of the
content may or may not be reflected in information about students )
and the instructional environment. Conversely, the structure of
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the content may or may not reflect the structure of the task.
Dependent on the resolution of these questions is the structural
complexity of information in the SET Component.

Instructional Strategies. An instructional strategy is a

procedure for delivering instruction. One approach to its
representation is generative in that each strategy is a sequence
of instructional primitives, configured and constrained by
grammatical rules. Another approach views strategies as black
boxes, which we call transaction frames. Although unstructured,
transaction frames are schematic and can be configured to meet
any of a broad class of instructional situations. These same
issues and approaches apply not only to individual strategies but
also to entire curricula.

The AIDA Executive. The AIDA Executive defines the mapping
from SET and Content components to instructional strategies. The
Executive operates by parsing content into objectives and then
matching these objectives to strategies. Identification of
objectives is determined by the structure of the content.
Information about objective type, students, and environment is
influential in determining the strategy.

Instructjonal Deljvery. 1Instruction is delivered by
executing the strategies produced by the AIDA Executive. The
level of interaction in these procedures is a major determinant
of the informatlon-proce581nq requirements of the delivery
system. In addition, since the Instructional Delivery component
acts as an interpreter of strategy specifications, the power of
the interpreter must be matched to the level of abstraction in °
the strategy specifications.

. Evaluation, within the AIDA Concept, is used to
determine where problems exist and how to make improvements.
Essential in any evaluation is to determine the cause of
problems, be they in quality of implementation, optlmallty of the
desxgn, or validity of underlying design assumptions. Also
lmportant is the identification of the locus of any problems,
that 1s, of the particular component of the AIDA Concept that
gives rise to the problem.

Resolving all of these issues in general is obviously an
lmp0551b1e problem. 1In particular contexts, however, many of the
issues become irrelevant and others become tractable. To
understand how these issues are manifest in particular
situations, we turn now to a discussion of the context of
instructional design and development. Because a systematic view
of instructional development contexts is beyond me, the treatment
below is limited to the analysis of two examples of particular
development contexts. One of these contexts, the Air Force
Technical Training Center, is real although my presentation of
that context may depart from reality at several points. The
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second context, CAI 'R Us, is fictional but representative of a
number of instructional development organizations.

The choice of these two contexts was deliberate and intended
to focus the discussion on contextual aspects of au*omation. The
next two sections describe the contexts in terms of the AIDA
concept and ask how that concept can be profitably automated.

i rechnical Traini cent

e ve m vi

The Air Force Technical Training Center is responsible for
the design, development and management of Air Force technical
training. Training requirements are promulgated by authorities
outside of the Center. When training development requests arrive
at the Center, they are assigned to one of several departments
known as Training Development Branches (TDB). These TDBs are
organized around particular technical specialties. Some branches
of the Center are involved in special projects such as exportable
CAI that cut across technical specialties. Although not
explicitly addressed here, these units have much in common with
CAI 'R Us, which is discussed in the next section.

When a development request arrives at a TDB, it is placed in
the hands of a Training Specialist, who then assumes
responsibility for developing the course. These Training
Specialists are subject-matter experts in the training to be
developed but have little if any expertise in training-design and
development.

. Two mechanisms define the content of courses
developed at the center. Requests for training development are
accompanied by a document known as Specialty Training Standards
(STS). This document, for the most part, defines the structure
of the subject matter. The content (as distinct from structure)
resides in the mind of the Training Specialist responsible for
course development.

SET. The STS defines, in addition to course requirements,
the entering capabilities of students. The Training Specialist's
personal knowledge is, no doubt, used to supplement this written
documentation. Constraints on the training environment (e.q.,
course length and method of instruction) may be provided with the
training request. Otherwise, this information is developed as
part of the design process. Task information resides almost
completely in the Training Specialist's mind or in technical
documentation available to him (Spector, 1990).

Ar ies. Instructional strategies are not
explicitly developed in the course of training design and
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development. Rather, they are implicitly embodied in lesson
plans and other course materials. Other aspects of instructional
strategy are represented in the instructors' minds.

The AIDA Executive. The Air Force has its version of an ISD
model that is meant, among other things, to guide the selection
of instructional strategies to meet particular objectives.
However, the model is not appropriate to the particular needs of
most Training Specialists at the Center, and their lack of
training in instructional design renders them ill equipped to
implement formal instructional design methods.

I suspect that tradition is the principle determinant of
instructional strategies at the Center. Since each of the TDBs
develops training within a technical specialty, they accumulate
schematic knowledge of instruction in the specialty. 1In
developing training to meet a particular objective, they match
the objective to one or another instructional strategy, and
configure the strategy to fit the particular objective.
Configuration may be largely a process of consulting old
strategies that have been previously configured to similar
objectives.

Instructional Deljvery. Instruction is typically delivered

in a conventional classroom setting to classes of about eight
students. Students are provided with some written materials and
instructors work from written lesson plans. Since a TDB is
responsible for both development and delivery of instruction,
some aspects of instructional delivery are not explicit in lesson
plans or course material but rather are carried directly from
development to classroom by Training Specialists. The small
class size indicates that the level of interactivity in delivery
is quite high.

Evaluatjon. The principal mechanism for quality control at
the Center is documentation of the ISD process. This

documentation conforms to a standard Air Force ISD model and is
considered more burdensome than helpful in quality control.

Formative evaluation is difficult under most conventional
ISD models since opportunities for sensitivity analyses and
interim experiments are limited. Although informal evaluation of
instruction may feed back into subsequent design, formative
evaluation is not a large concern at the Center.

Some attention is given to summative evaluation by including
measurement and standards as part of the required ISD process.
Measurements are restricted to tests of student performance
(usually on pencil-and-paper instruments). These tests might
constitute useful summative information were it not for
deficiencies in quality control and formative evaluation. There
is no systematic way of tracing problems evident in these tests
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to their sources in the design and development process.

By way of summary, we can point to four aspects of
instructional design and development at the center that have
particular significance for automating these processes.

First, the division of labor for course development is of
interest. The determination of objectives and their sequence is
in the hands of authorities outside of the TDB. All other
aspects of design, development, and delivery are the
responsibility of the Training Specialist.

Second, the population of courses developed at a single TDB
or by a single Training Specialist is narrowly circumscribed
along technical lines. All courses written within a TDB have
roughly the same objectives and address roughly the same
technology. What distinguishes one development project from
another are the particular technologies involved.

Third, and consistent with the second aspect, those
responsible for instructional design and development are subject-
matter experts and usually possess no special expertise in
instructional science or practice.

Fourth, there is little in the way of automated support for
either development or delivery of instruction. Tables and forms
used in the ISD process offer the opportunity for some formal
representation content and instructional structure. The content
itself and most of the instructional procedures are not formally
represented. Development and delivery procedures are implemented
by the human Training Specialists.

£t for t i ini Cente

With the understanding developed above of the context
governing instructional design and development at the Center, we
can envision the kind of automated support appropriate for this
context. The following speculations describe first how AIDA
might appear to a Training Specialist at the Center and then how
this vision relates to the more general AIDA Concept.

: course ve t fantasy. Presented
here is a brief sketch of course development using AIDA in the
TDB devoted to Advanced Carbohydrate Preparation Equipment. The
Training Specialist, Kim Cook, is about to prepare a new
maintenance training curriculum for the Air Force's latest
toaster, the To-14 (including the attack model of the toaster,
the To-14A4).

The AIDA workstation that supports Kim's development effort
has a large screen, appropriate manipulanda and output devices,
access to scanners and to the toaster's CALS-compliant technical
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documentation. The workstation also offers a complete complement
of document preparation tools: Optical Character Reading (OCR)
software, text and graphic editors, and other useful
applications. AIDA itself allows the Kim to operate with any of
three views of the evolving course:

A Technical Description view allows her to record and edit
information about the toaster itself. :

A Training Requirements view allows her to record and track
instructional objectives.

A Curriculum view allows her to work with the evolving
curriculun.

Kim opens a window exhibiting the top level Curriculum view
of the new course. At the moment, it contains nothing but the AF
Standard Toaster Maintenance Training Curriculum Template. She
also opens a window on the Training Requirements Window loaded
with objectives defined in the STS. Finally, she opens a new
Technical Description window for the To_14 and a window on an
existing Technical Description of the To-12, the direct
predecessor to the To-14. .

Kim's first task is to create, in the new Technical
Description window, a Dynamic Block Diagram (DBD) of the To-14.
A DBD is nothing more than a qualitative simulation of the
device, and it is entered using an editor similar to that
described in Towne and Munro (1988).

Most of the DBD can be copied from the existing To-12
Technical Description. Kim updates the old To-12 DBD with minor
technical changes. She also adds the To-14's new Digital Anti-
Burn Sensor (DABS) and the explosive-propelled toast-eject unit
on the To-14A.

A convention adopted éarly on in the design of AIDA itself
calls for the use of terms related to the technical domains
taught at the center or to concrete instructional operations.
Training Specialists confused by the term "qualitative model"
instantly grasped the meaning of “Dynamic Block Diagram.™

As soon as Kim completes the DBD, the Curriculum window
changes in almost imperceptible ways indicating that AIDA has
"roughed in" certain lessons. She ignores these changes and
begins to fill in technical data on the components and
connections in the DBD. Some of these data are taken from the
To-14's technical documentation, others from the To-12's
Technical Description. As these data are added more changes are
evident in the Curriculum window.
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Kim next turns to a section of the Technical Description
known as Standard Maintenance Procedures. She examines a library
of toaster-maintenance procedures, chooses those appropriate to
the To-14 and, working from the technical documentation,
configures each to fit the To-14. She also adds a procedure for
testing the DABS, adapting a procedure found in a larger library
of maintenance procedures. The new procedure calls for the use
of special purpose DABS test equipment, which is automatically
added to a list of test equipment to be covered in the course.

with the technical description essentially complete, Kim
turns her attention to the curriculum. At this point, the
Curriculum window contains a tentative curriculum. Some of the
modules, such as the section on standard maintenance procedures
are described in some detail. Others, such as troubleshooting
training are nothing more than place markers at this point.

_ Associated with each module in the evolving course are
certain training variables, including the time allotted to the
module and the media to be used. These aspects of the course
were established years ago as part of the To-14 acquisition
process. Kim checks these previously established values and
revises one to reflect the fact that the modules on standard
maintenance procedures will be provided via interactive videodisc
since production of the planned maintenance simulator has been
held up pending OSHA approval.

Kim then begins a careful inspection of the material itself.
A general orientation to the course is to be given in a classroom
environment. Kim scrutinizes the lesson plans for that section
of the course, fills in the many blanks using material from the
technical documentation, and edits the material for coherence and
completeness. She adds a discussion of some of the To-14's
idiosyncrasies that AIDA failed to include in the course.

The second section of the course provides interactive
videodisc practice in standard preventive maintenance and repair
procedures. AIDA has already created the computational structure
for this training and formulated a proposed videodisc design.

Kim edits the material, adding warnings appropriate to some
procedures. She uses electronic mail to send the videodisc
design to the Center's video production unit along with a request
for an initial design meeting.

The last section of the course is a computer-based
troubleshooting laboratory. Kim consults the Training
Requirements related to troubleshooting and selects a list of
target faults for the laboratory. AIDA uses the DBD to create
and sequence exercises for each of the faults. It also proposes
additional exercises on faults easily confused with those in
Kim's target set. She changes the instructional medium for the
lab to interactive videodisc and obtains a revised disc design
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from AIDA. AIDA warns her that the module is too long for the
scheduled time, but she ignores this warning since she knows that
the students will find enough time to complete the lab.

What is important to understand about this fantasy is that
AIDA is designed to talk to the Training Specialist in her terms,
that is, in terms of technology and teaching, not in
instructional design terms. Kim is never asked to think about
facts, rules, concepts, and procedures, or about expository vs.
inquisitory strategies, or about learner control. Rather, she is
asked what the To-14 is like, what students must learn about it,
and what the training environment is like. She is also given
control over the end product and the responsibility for aspects
of the course beyond the scope of automation.

We are now in a position to ask how each of the components
of the AIDA concept can be designed to implement this philosophy.

Ccontent. What makes the foregoing description a feasible
picture of automated instructional development at the Center, is
the organization of the Center's activities around technical
specialties and subject-matter expertise. A typical TDB may, for
example, be responsible for the development of maintenance
training for each of a class of electronic devices (e.g., radar,
avionics). Because maintenance skills are the targets of
instruction in each case and because the devices being maintained
are all of a kind, the cognitive structures that support skilled
performance can be represented in the same fashion in all
courses. The initial development of a representational system
may be difficult and plagued with the problems mentioned .in
Section 1.1, but the uniformity of maintenance skills across
courses offers the promise that a few common representatlonal
systems can serve to represent the content of tralnlng in a large
number of courses. The content of a typical maintenance course,
for example, might employ the following devices:

qualitative models of the type devised by Forbus (1984) to
represent equipment functionality.

procedural representations of the type described by Kieras
(1987) to represent preventlve maintenance and repair
procedures. (By repair we mean the procedures needed to
correct a known problem, not the fault-lsolatlon procedures
used to detect the problem.)

troubleshooting procedures of the type discussed by Hunt and
Rouse (1984).

text models of the type discussed by van Dijk (1980) for the
representatlon of technical documentation. -
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materials relating procedural and conceptual representation
to the equipment itself, test equipment, and ancillary
materials (simulators, photographs, etc.), perhaps based on
some” of Baggett's (1985) suggestions.

Some of these representational devices apply to wider range
of contexts than equipment maintenance. However, the key to
successful representation here is the development of structures
that are specialized to maintenance as it is taught in the Air
Force. A system for automating the representation of technical
documentation should be based not on a general Van Dijk (1980)
model but rather on a Van Dijk-like model specialized to
represent Air Force technical documentation. A calibration
procedure should not be represented within a framework that
covers all goal oriented procedures but rather with a schema
specific to calibration.

SET. Individuals being trained in similar technological
skills are normally drawn from populations with similar
backgrounds. Thus, to the extent that courses under the purview
of a single TDB address similar technological skills, student and
environment variables in one course will usually be the ones that
are important in others developed in the same TDB. Furthermore,
the treatment of these variables in designing instruction will
also be the same across courses.

This is not to say that there is no variation from student
to student or training environment to training environment, but
simply that the important sources of variation will remain the
same from course to course and can be dealt with in the same
fashion in different courses. Students deficient in digital
logic will be given the same sort of remediation in a course
devoted to one sort of radar system as they will in a course on a
different sort of radar system. Likewise, the availability of a
maintenance simulator for one type of equipment will have the
same impact on instruction as the availability of a simulator in
a course addressing a different piece of equipment of the same
class.

As the consequence, the opportunity exists for determining
how to treat SET considerations in, say, a maintenance-training
context and automating that treatment implicitly in the AIDA
Executive. The general problem of remediating deficiencies or
assigning media to instructional objectives' is difficult and
probably beyond effective automation. Fortunately, these general
problems are not of concern to the Training Specialist at the
Technical Training Center. Of intarest to him are particular
students deficient in digital logic and availability of
particular maintenance simulators. These specific issues,
because they are constrained to the context of maintenance
training, can be handled automatically and may even benefit from
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automation.

. Earlier I suggested that the
fundamental issue in the development of curricula and
instructional strategies was that of generation vs. schema
selection. When the space of instructional objectives is highly
circumscribed (as it is at the Technical Training Center) and
when computers are used to develop curricula, then the latter
approach is the one to be favored.

A schema for a maintenance-training curriculum, such as the
one described above for the To-14, might have the following main
components: .

an orientation to equipment structure, function, and
documentation;

hands-on training in preventive maintenance and repair
procedures; and

a troubleshooting laboratory.

Each of these components will have a structure of its own
and will, at the lowest level consist of particular transaction
frames. The orientation component, for example, might have a
structure dictated by elaboration theory (Reigeluth and Stein,
1983). The procedure-training component might be organized
around the occasions for invoking each procedure, but would have
an otherwise flat structure. The troubleshooting laboratory
could consist of problems that are organized and sequenced in
such a way as to promote the development of an effective
troubleshooting strategy. The further development of this
curriculum for a particular maintenance course could be automated
.by a mechanism that would sequence and configure transaction
frames from a computer model of the equipment in the Content
component, material in the equipment's technical documentation,
and some material supplied by a Training Specialist.

It is easy to underestimate the importance of restricting
the scope of automated curriculum development to a particular
domain, in this case, maintenance. To appreciate the importance
of this restriction, consider the following:

The top level structure of the curriculum is, itself,
specific to maintenance.

Assume one chose to use elaboration theory to structure the
orientation component. Automating elaboration theory in
general is a major undertaking. Much more feasible is the
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development of an automated procedure, conforming to
elaboration theory, for generating an orientation to the
structure, function, and documentation of a piece of
equipment.

Many, although not all, of the transaction frames,
particularly those for troubleshooting practice, can only be
profitably automated as maintenance-specific procedures.

An additional benefit of domain-specific curricula and
transaction frames is the possibility, suggested above in our
fantasy, of automatically configuring the same instructional
strategy to different media. Within a domain, each transaction
frame can be assigned a set of alternative media and can be
automatically configured to any member of that set. A -
troubleshooting transaction frame, for example, could be
configured to run a qualitative simulator like STEAMER (Hollan,
Hutchins, and Weitzman, 1984) or a videodisc-based simulator like
GMTS (Towne, 1987). It could also be configured to generate
lesson plans for a classroom implementation of a troubleshooting
exercise. The possibility of these alternate configurations,
however, depends on knowing enough about what is being taught to
be able to specify the set of applicable media and the
configuration procedure.

To summarize, instructional strategies in technical training
can be given a formal representation and, moreover, a
representational scheme can be devised to adequately cover the
instructional strategies used within a particular technical
domain. Strategies represented in such a scheme will need
further specialization to particular material, and some may,
themselves, be specializations of more general strategies.

However, in practice, AIDA will achieve maximum advantage by
representing instructional strategies at the most specialized
level that covers the population of courses developed by the
Training Specialist.

. In the previous section I noted that
the task of the AIDA executive is to produce a curriculum of
strategies from Content and SET specifications. It also
describes a general technique for this task based on
decomposition of the content into distinct objectives, assignment
of strategies to objectives, and configuration of those
strategies to fit the content.

This top-down approach can be feasibly implemented by
humans, but presents significant and perhaps insurmountable
problems to machines. The source of difficulties in automated
top-down planning is that of ensuring conformance of the plan to
constraints that cross the boundaries of plan components. In

54




instruction, for example, the inclusion of say an illustration in
one part of the course may be critical in selecting and
configuring a transaction frame in another part of the course.

The simplest solution to the machine planning problem is to
avoid it by providing ready-made plans, and that is the solution
suggested for AIDA as described here. The templates and
procedures that represent curricula and instructional strategies
are nothing more than plans for instruction in particular
domains. The AIDA executive, instead of having to reason from
abstract instructional principles need only invoke a suite of
slot-filling procedures to configure the curriculum and its
transaction frames. These procedures, like the curriculum
templates and content descriptions would be ad hoc and specific
to a domain. For example, a slot-filling procedure for a
troubleshooting exercise would first select and sequence faults
using a procedure to maintain coherence and then, for each fault
chosen, run an optimal trouble-shooting model to generate the '
correct sequence of troubleshooting actions to isolate the fault.

Instructional Delivery. I see two opportunities for AIDA to
advance instructional delivery in settings like the Technical
Training Center.

First, AIDA can provide direct support of advanced,
computer-based instructional techniques. The information
processing requirements of computer-based simulators, intelligent
tutoring systems, adaptive testing, and other techniques are such
that their implementation requires computer support. A training
device such as the IMTS (Towne and Munro, 1988) cannot be
feasibly configured for any application without the support of
its computer-based authoring facilities.

This is not to say that AIDA in this context should restrict
itself to computer-based delivery. One of AIDA's strong points
here is that of providing a complete solution to technical
training problems. Restricting the media that it addresses to
computers would make it inapplicable to any situation requiring
the higher levels of interactivity that only "live" systems and
human instructors can provide in some circumstances.

A second opportunity for AIDA to advance the delivery of
instruction is by helping instructional developers deal with
turbulence in training environments and student characteristics.
For example, it is seldom the case that all training devices for
a piece of equipment are available when the first students need
to be trained in the operation and maintenance of that equipment.

A single transaction frame, appropriately configured, should
be able to generate equivalent instructional procedures for
alternative media. This capability, to reconfigure transaction
frames for different circumstances, would greatly ease the burden
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of producing revised materials as new media become available.

. the previous section describes three aspects of
evaluation: quality control, formative evaluation, and summative
evaluation. The quality-control issues discussed there arise more
in connection with the design of AIDA as conceived of here than
with its use. Validation of the sort discussed in that section
should be carried out on the initial implementation of AIDA and
on each of extension to a new technical area. It should also be
possible to check the conformance of courses to quality standards
such as those found in the IQI (Montague, 1983). Partial support
for this validation can be provided by AIDA itself.

AIDA, as sketched in the fantasy above, offers numerous
opportunities for formative evaluation. Training Specialists can
create different qualitative models of the same device and
compare the curricula created by the two models. They can play
the same what-if games with other aspects of the design such as
media assignment and problem selection. Automated generation of
curricula provides a far greater measure of control in empirical
comparisons of different design approaches.

Summative evaluation is not particularly relevant to the
concept of AIDA as presented here. In the Technical Training
Center, AIDA should be viewed as a development tool whose
validity should be established prior to implementation. Although
AIDA can support the continuous evaluation of students both
before and after training, it offers no special advantage in some
of the more precise summative evaluation techniques suggested
above.

In summary, training development contexts like the Technical
Training Center, where training requirements, content structure,
and curriculum structure vary little from course to course, are
prime candidates for effective automation of instructional
design. AIDA, in these contexts, should support instructional
design and development through conversations with the developer
that address the particulars of the subject matter, the training
requirements, and instructional materials. The implementation of
this philosophy calls for the representation of both content and
instruction at the most specialized level that covers the
population of courses under development. Instructional design
theory may play a key role in the development of these
specialized representations, but it should not play an explicit
role in their implementation.

The viability of this conception depends on some nontrivial
assumptions of how instruction changes across technical domains
and specialties. One way of expressing these assumptions is
shown in Figure 8. Technical domains and specialties fall in a
hierarchy and close relatives in the instructional hierarchy
share more in the way of instruction than do distant cousins.
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Thus, for example, the changes needed to adapt To-12 maintenance
training to To-14 maintenance training are trivial compared to
the changes needed to adopt To-12 maintenance training to a
course in ADA programming. This assumption is violated to the
iztent that small changes in content or training requirements
lead to large changes in instructional design. One can expect
some such violations but I doubt that they are numerous enough to
threaten the viability of AIDA as described here.

: The level of generality of AIDA within the hierarchy of
Figure 8 is an open question. An AIDA that addresses, for
example, only the maintenance training for one particular device
is too specialized. An AIDA that addresses all of technical
training is too general. I suggest above that AIDA be
specialized at the branch level, thus making the question
something of an organizational issue. One could envision more
general versions of AIDA, for example, one capable of designing
maintenance training for any electronic device or maintenance
training for all devices. AIDA ceases to become useful, however,
when its level of generality exceeds that of the technical
knowledge of the subject-matter expert designing the course. a
way of having one's cake and eating it too is to rely on a
configurable AIDA that could be specialized for development of
training in particular specialties. (The computer program
responsible for creating specialized AIDAs would be known as the
Automated AIDA De51gn Assistant, or AAIDADA).

Technical Domains

/\

ymmR Computer Programming
Electronic Electromechanical internal Combustion da PL/I
Radars Toasters Lawn Mowers
To-12 To-14 . LawnB/oy‘B Qirl

Figure 8. Technical Domains Hierarchy Fragment
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CAI 'R Us
The Development Environment

CAI 'R Us is a fictional firm engaged in the development of
Computer-Assisted Instruction (CAI). It was founded in 1975 by a
group of computer programmers and educators who had formerly
worked in a university-based CAI lab. The lab was dissolved due
to lack of funding, and CAI 'R Us bought the lab's computer along
with rights to the TeachWrite authoring language. TeachWrite,
now updated to run on microcomputers, is considered the
cornerstone of CAI 'R Us' success. The language's many design
flaws -- among them, lack of recursion, block structure, scoping,
and structured variables -- are masked by the availability to the
author of 2,436 powerful TeachWrite commands.

CAI 'R Us writes courseware mainly for the government or for
its contractors. Jobs vary in content but are constrained by
suitability of the media. Most of their contracts are awarded
through competitive procurement.

content. Because CAI 'R Us obtains most of its work through
competitive procurement and because they concentrate more on
development than front-end analysis, they usually start work with
a preliminary needs analysis in hand. This analysis, in addition
to identifying and structuring instructional objectives, also
tailors the scope of the project to the media available to CAI 'R
Us.

In spite of the computer-based nature of CAI 'R Us' work,
formal representations of the instructional objectives are
usually not provided with the front-end analysis. Cursory verbal
descriptions of each objective (in behavioral terms) are provided
via the RFP, and additional definition is obtained in
consultation with subject-matter experts during the course of
design and development.

. In spite of TeachWrite's 2,436
powerful commands, the strategies used in any particular job are
small in number. Some of these strategies are common to all of
CAI 'R Us' jobs and, indeed, to most conventional CAI.
Sequential displays of graphic or text, multiple-~choice queries,
and so-called interactive, branching simulations are among these
common devices. In addition, most jobs require the development

of specialized, job specific instructional strategies, usually
based on simulation.

The AIDA Executive. The design and development of
courseware at CAI 'R Us follows an engineering model. A
conceptual design document is developed that describes the
curriculum and specifies the strategies to be used for each
lesson or unit. A brief description of the content of each unit

58




is also provided with this document. Curriculum design is
informal but tied to the instructional objectives provided by the
client. A quality control check associates each unit in the
design with its associated objective(s) and vice-versa. The
selection of strategies is guided implicitly by a few simple
rules of thumb such as those found in Merrill (1989). Neither
CAI 'R Us nor its clients have ever felt the need to make these
rules explicit.

A detail design document is produced after client approval
of the conceptual design. This detail design is typically a
storyboard description of those parts of the course administered
via conventional CAI and a detailed description of any special
simulations or strategies. The detail design document then,
represents the configuration of strategies selected in the
conceptual design phase. This configuration process is, like the
conceptual design, informal. Material is written or selected in
consultation with subject-matter experts engaged by the client or
by CAI 'R Us.

. CAI 'R Us makes available to its
clients the full range of automated instructional delivery
devices including interactive videodisc, computer-generated
graphics, and a variety of manipulanda (mice, touch-screen,
etc.). The level of interactivity is local interactive, to use
the terms introduced earlier. Since TeachWrite itself is a
general-purpose language with no explicit means of representing
instructional content, the translation from detailed design
specification to code is done by a humans.

Instruction by humans is not a central part of CAI 'R Us'
offerings. The firm does, however, provide some support and
training for instructors in automated classrooms.

- Evaluation. The typical CAI 'R Us project contains
procedures for quality control, for formative evaluation, and for
summative evaluation. Clients and CAI 'R Us review both the
conceptual and detailed design of the project. Pilot experiments
of some or all units allow for formative evaluation.

Incorporated into each course are both formal and informal
evaluation instruments. Clients are provided with summary
statistics of student performance and students' subjective
ratings of the course. Although the development context at CAI 'R
Us shares some important features with that at the Air Force
Technical Training Center, they are different in many ways
critical to the issue of automated instructional development and
design.

Like the Technical Training Center, CAI ‘R Us usually
receives something in the way of a front-end analysis from its
clients. This analysis provides the firm with instructional
objectives that presumably can be met using the media available
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to CAI 'R Us.

Unlike the Technical Training Center, however, there are no
domain restrictions on the projects undertaken at CAI 'R Us. The
company may, on one occasion, take a job addressing the training
of Social Workers in dealing with drug addicts and, on another
occasion, undertake to provide training of budget analysts on
electronic spreadsheets.

Also in contrast to the Technical Training Center, subject-
matter expertise then is not what CAI 'R Us brings to their work.
Rather, they provide expertise in instructional design and
development and the development of computer-assisted instruction
in particular.

Automation plays a much more critical role at CAI 'R Us than
at the Technical Training Center. Since all instruction is
delivered by computer, the instructional strategies involved are
only those that can be automated. Although these strategies do
not themselves have formal representations, they could be
formalized and automated with appropriate software.

Automated Instructional Design at CAI 'R Us

We can now try to envision, as we did in the previous
section for the Technical Training Center, what AIDA might be
like if it were designed for use at CAI 'R Us. As the reader
might suspect the aspects of the CAI 'R Us context just reviewed
imply quite a different model of AIDA than the one dlscussed in
connection with the Technical Training Center.

: \'4

. Harry Hylton-Ashcroft, a Senior Design Consultant at
CAI 'R Us is working with an RFP from the Department of Energy
requesting a self-contained CAI package to train geologists and
petroleum engineers in methods for reservoir analysis for use
with new secondary-recovery methods. Reservoir analysis is the
process of estimating how much oil or gas can be recovered from a
prospective or existing oil field. Secondary recovery techniques
are those used to recover minerals once the primary flow has been
exhausted. Among the most important are water or gas injection
and horizontal drilling.

According to the RFP, students need to be able to
collect data needed for reservoir analysis,

select an analysis method based on data available and
recovery method,

make use of a DoE-furnished computer program, RESEVAL2, for
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reservoir analysis, and

interpret the output of the program.

Harry, recognizing that his meagre knowledge of the oil
industry extends only to his local gas station, brings in an
expert reservoir engineer, Mud Doogan, as a consultant. Harry,
Mud, and AIDA work together under a tight deadline to provide a

conceptual design for RFP.

Harry's AIDA workstation presents three views of a project:

A SET view permits entry and editing of information about

students.

A Content view permits entry and editing of course content.

An Instructional Strategies view permits inspection and
editing of the evolving course design.

Harry and Mud begin with the SET view. Harry opens an
Enterprise frame and asks Mud, "What, basically, are we trying to

teach people to do?"

Mud replies, "Estimate petroleum reserves recoverable using
various secondary-recovery methods."

Harry enters Mud's words into the Enterprise frame of the
SET view. Harry does not understand what Mud is saying; Mud does

not understand what Harry is doing.
have made substantial progress.

However, both feel that they

Specify
Recovery
Method

Gather
Input Data
Run
RESEVAL2
Interpret
Results

Figure 9. Top-Level Instructional Objectives
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Harry then turns to the Content view and begins to elaborate
the knowledge needed to succeed in the enterprise. They inform
AIDA of a top-level description of the estimation procedure, the
result is depicted in Figure 9. Harry then defines the output of
the first step depicted in Figure 9, "Gather Data." These data
are different sorts (seismic, logs, scouting reports, etc.).

AIDA has the capability to represent the structure of each in
considerable detail.

Harry is beginning to feel that the job will be a piece of
cake, when Mud remarks, "Of course, most of the time, you don't
have all that stuff [the data to be gathered)." In the
conversation that ensues, larry learns of some of the
complexities in this first step. Some data are always available;
some are available at a cost; and some are unavailable at any
cost. Depending on the situation, some data are less useful than
others. Some data, taken under less than ideal conditions, must
be adjusted based on the engineer's professional judgment.
Sometimes a first analysis indicates that more data and
subsequent analyses are needed. The basis of many of these
judgments and decisions is a complex geological model of "what's
down there." Harry decides that he cannot respond to the RFP with
a complete course on reservoir engineering. He turns his back on
AIDA and, in consultation with Mud, formulates a simplified model
of the job. Students will be taught how to run the DoE programs
and interpret their output under a restricted range of standard
conditions and existing data.

Harry and Mud return to AIDA and the elaboration of the
first step. They use AIDA's standard forms for describing the
data to be gathered in the first step. Mud allows that since
gathering the data itself is outside the scope of the course, its
preparation for input into the DoE programs is the only aspect of
the step that needs to be taught. Harry can use AIDA to
represent the data-preparation procedure for some types of data.
Others require perceptual skills or complex procedures outside
the scope of AIDA's procedure-representation facilities. Harry
indicates to AIDA that sample materials can be made available for
training and testing.

Moving on to the second step of the process illustrated in
Figure 9, Harry learns that the heart of the process is that of
specifying the parameters of each secondary-recovery method under
consideration. Harry has no trouble in informing AIDA of the
structure of the parameters of each possible method and of rules
for providing their values. He also finds it easy to specify how
the results of this specification should be prepared for input to
the DoE programs.

. Harry is unable to complete the "Run DoE Program" step in
Figure 9, because the DoE programs have not been released yet.
However, consultation with DoE reveals that the programs are
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menu-driven, run on personal computers, and have all of the
characteristics of programs for which CAI 'R Us has developed
training in the past. He makes a note to include references to
earlier work in his proposal.

Moving on to the "Interpret Output" step (see Figure 9),
Harry learns from Mud that students will need to learn the output
format, the assumptions of the analysis method, and how to assess
the accuracy of the analysis. Harry chooses to represent DoE .
program output as a part-whole structure in AIDA so that students
will be taught the components of the output and their location in
the output report. AIDA assists Harry in elaborating the
analysis methods used in terms of a causal model describing data
flow among the program's modules. Finally, Harry uses AIDA's
rule-based representational system to construct a procedure for
assessing the accuracy of RESEVAL2's estimates. Mud, by this
time, is totally overawed and completely confused.

The content analysis is complete enough to warrant some
curricular recommendations. AIDA first makes some general
curriculum recommendations. In particular, it recommends the
five module course depicted in Figure 10.

Both Mud and Harry accept AIDA's top level recommendation.
Harry, noting that considerable text and graphic material will be
needed to complete the Introduction module, delays further
development until after contract award. He asks AIDA to open the
second module for further development. AIDA suggests two
techniques for teaching students how to format input data. The
first is exploratory in that students provide their own data, the
second is generative in that sample data are provided to the
student. The decision, according to AIDA, should be made on the
basis of motivation. It engages Mud and Harry in a series of
simple questions about students' jobs and the potential lmpact of
instruction, finally concluding that student motivation is
"high." Mud remarks that AIDA apparently doesn't know how
petroleum engineers feel about DoE software, so Harry resets
student motivation to "low."

AIDA accepts Harry's revised evaluation and his request to
generate a sample of the problems that students would be given to
practice preparing data for input to RESEVAL2. AIDA reminds
Harry that some graphic data (sample electronic log records) have
not yet been provided. It then presents a few sample exercises
from the module just as they would appear to students. Mud is
impressed; he is particularly impressed by one problem in which
students are given data from a Sprayberry well that yielded half
a million barrels of oil. (The term "Sprayberry" refers to a
formation found at about 7,000 feet. Wells drilled in this

formation normally produce about 70,000 barrels during their
lifetime.)
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Harry, realizing that not all combinations of inputs are
realistic, assesses his options for obtaining reasonable
problems: develop off-line, realistic data sets, construct or
purchase a geological model that will generate pla951§le values,
or construct an approximate rule-based generator within AIDA that
will generate realistic data for perhaps 95% of the problems. He
decides that the last choice is the least costly and makes a note
to cost out the development of the rules.

1. Introduction
r______ _.____1

2. Gather 3. Specify
Recovery
Input Data Mothod
-4, Run
RESEVAL2
5. Interpret
Results .
Figure 10. Course Map 8. Integration

Harry and Mud continue their work with AIDA and, within a
short time, are able to generate a conceptual design for the
project and enough sample materials to support a response to the
RFP. Although Module 3 is not in the design (because RESEVAL2 is
not complete), the design for Module 4 is quite impressive. AIDA
generates an entire interactive lesson on different parts of
RESEVAL2's reports. Also part of the design is a hypertext
facility that students can use to inspect the methods used by
RESEVAL2 to generate each result. Finally, AIDA automatically
designs a lesson with integrated practice that teaches students
how to assess the accuracy of the figures produced by RESEVAL2.
Since CAI 'R Us won the contract and were, with Mud and AIDA's
help, able to finish the work on time and under budget, a summary
of AIDA's contribution to the project is worth mentioning.

AIDA took CAI 'R Us from an enterprise that depended
primarily on hand-crafted instructional strategies to one in
which machines are responsible for a large part of curriculum
design and development. This transformation was accomplished by
explicitly automating all of the strategies previously used only
implicitly at CAI 'R Us (plus a few more) and interfacing the
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strategies thus automated to collection of knowledge
representation mechanisms that cover most of the content of
interest to CAI 'R Us' clients. Representation of some material
is awkward at best, and not all content can be represented in the
system, but enough content goes directly from AIDA into
courseware to have a major impact on the design and development
process at CAI 'R Us.

How AIDA might be designed for effectiveness in the CAI 'R
Us development context is taken up in the rest of this section.

Content. The nature of CAI 'R Us' business dictates the
criteria that apply to representation of its content. AIDA must
provide generality in the sense of being able to represent
content from a number of different subject domains. It must
provide parsimony in using as few knowledge-representation
devices as possible. It must provide knowledge structures that
are useful in instructional design. These three constraints
cannot all be met by the same systen.

As a compromise, AIDA offers one knowledge-representation
mechanism for each of three major classes of knowledge: .

Production systems are used to represent procedural
knowledge.

Schema are used to represent declarative knowledge

Qualitative-process theory (Forbus, 1984) is used to
represent causal knowledge.

AIDA also provides, at the most concrete level, for the
inclusion of uninterpreted text, graphics, and computer programs.

Because these mechanisms are general, they are useful in the
representation of much of the knowledge in each of CAI 'R Us'
projects. They fail when specialized knowledge, such as geology,
is too complex to be feasibly analyzed within the scope of the
project. The three mechanisms are obviously parsimonious since
they are almost completely unencumbered with ad hoc mechanisms.

In the initial version of AIDA, knowledge representation was
completely unencumbered with special-purpose mechanisms. Later
versions have incorporated certain mechanisms, such as iteration,
that are found in almost every application.

Perhaps most important are the availability of instructional

strategies that can be directly linked to the knowledge
structures so that they are useful in designing instruction.
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Content representation in AIDA are further constrained by a
decomposability requirement. The content of a project must have
a hierarchical representation since the AIDA executive (described
below) decomposes the content along hierarchical lines.

SET. Recall that in Section 1.2, we discussed two
approaches to representing information about students,
environment, and task. One approach is to use a fixed vector of
features, such as motivation, to represent these aspects of the
instructional situation. A second approach provides more precise
information by using structures in the SET component that reflect
the structure of the content. This latter approach would, for
example, support an intelligent tutoring system that concentrates
instruction on a student's individual weaknesses.

AIDA at CAI 'R Us uses the former, simpler model. Data on
student features are gathered as needed to select instructional
strategies, as we saw above when AIDA's recommendation of a
generative strategy depended on student motivation. Information
about the instructional environment is handled in the same way.
For example, certain strategies are not recommended if an
instructor is not available for consultation. AIDA's
representation of the task is even more simplistic, consisting of
nothing more than an uninterpreted statement of the overall goal
of training. AIDA relies on this statement to orient students to
the training situation.

Instructional Strategjes. AIDA's instructional strategies
at CATI 'R Us are similar to those described above in Section 2.2
ih connection with the Technical Training Center. A collection
of instructional schemata are available within AIDA. Each of
these schemata, once configured, becomes a procedure that
implements a particular instructional strateqgy. The schemata are
specialized to different levels of abstraction. That is, some
schemata are transaction frames that embody particular
interactions with students. Others handle lessons or collections
of transaction frames. Still others handle entire curricula.
Configuring a schema is a matter of drawing on appropriate
subject matter from the Content module, selecting subschemata,
and selecting media.

The AIDA Executive. In contrast to the Technical Training
Center, AIDA at CAI 'R Us is a top-down course designer. AIDA's
knowledge of how to teach is embedded in a system for matching
schemata to elements of the content hierarchy. The main
criterion for matching is the correspondence between the
knowledge structure to be taught and the candidate strategy.

That is, each strategy knows the kind of knowledge that it can
teach. More general strategies match objectives at higher levels
of the content hierarchy, and more specific strategies match low-
level elements of the hierarchy. For example, a general
curriculum strateqgy, shown in Figure 9, matched the first-level
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content decomposition shown in Figure 10. a specific hypertext
transaction frame matched the specific content element
representing RESEVAL2's models and assumptions.

In most cases, conflicts will arise when several strategies
match a content element. The converse situation, an impasse
where no strategy matches a particular element, is one about
which we do not like to think.

AIDA uses three mechanisms to resolve these conflicts. 1If
the element being matched has descendants, AIDA can often
eliminate strategies that cannot be matched at lower levels.
Decisions among those remaining can often be made using rules of
thumb that reference student and environment features. As a last
resort, the human developer can be asked to resolve the conflict.

Instructional Delivery. One of the key's to AIDA's success

at CAI 'R Us is the restriction of instructional delivery
mechanisms and the consequent restriction of instructional
strategies. CAI 'R Us does not deal with instructor-delivered
instruction or it's computer-based equivalent. Hence, it has no
need to consider or represent the dialog structures required to
implement this sort of instruction. Nor does CAI 'R Us deal, in
any serious way with non-interactive media such as text and
videotape. These media are used in CAI 'R Us' instructional
system, but their structure is never a design problem for AIDA;
AIDA never generates text or a shooting script for a videotape.
Rather, the delivery mechanisms available for use at CAI 'R Us
are those that achieve the middle levels of interactivity
described in an earlier section.

Of interest is the fact that these middle levels of
interactivity are fairly new to the instructional enterprise.
Conversation and discourse have been with the human race for tens
or hundreds of thousands of years. As the consequence they may
have a complexity that has .heretofore defied all attempts at
automation. Human-computer interaction is newer to the human
scene and is governed by simpler and less elaborate structures.
It is this simplicity that renders feasible the automated design
of computer-based instruction.

Evaluatijon. AIDA at CAI 'R Us offers considerable
opportunity for evaluation. Because AIDA itself undertakes much
of the design, quality control issues arise mainly in connection
with the assistance provided by human instructional developers.
Quality can be assessed in experiments using standard course
materials, and defects can be traced to specific points in the
design and development process. Naturalistic assessments are
also possible by sampling materials or decisions provided by
instructional designers and assessing the quality of the sample.
For purposes of formative evaluation, most "degrees of freedonm"
in a project occur in the design of the Content component and the
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choice of instructional strategies. AIDA can support the
evaluation of various options in each cases by producing designs
that implement each option. The resulting designs can be
submitted to a sensitivity analysis, and the ones that differ in
significant ways can be implemented and tested empirically.

Three aspects of summative evaluation are pertinent to AIDA
as it functions at CAI 'R Us. Of primary interest is the scope
of AIDA's capabilities. Some courses can be designed and
developed using AIDA's standard capabilities. For others AIDA
serves as little more than a shell for ad hoc instructional
methods implemented outside of its normal mechanisms. In some
cases these failures will be those of the Content module to
represent the subject matter. In others failure can be traced to
lack of a suitable strategy. 1In all cases it is important to
examine where, in each course or project, AIDA fails to provide
an appropriate representational or instructional method.

Second, there will be cases in which AIDA has the potential
for designing adequate instruction but in which design proves
impossible because the system is simply unusable. Failures of
this sort can be traced to low-level developer-AIDA interface
problems, to the lack of suitably strong mechanisms for
developer-AIDA interaction, to lack of training, or to a host of
other issues.

Finally, there will be cases in which design tasks are well
within AIDA's capabilities, and no problems arise in implementing
the design, but the instruction produced is simply not effective.
These problems will be manifest in performance measures taken
from students after all other sources of deficiencies have been
eliminated.

In summary, the AIDA found at CAI 'R Us is quite a different
beast than that found at the Air Force Technical Training Center.
CAI 'R Us brings a- relatively restricted set of instructional
mechanisms (those available through CAI) to bear on an almost
unrestricted content population. AIDA therefore offers general
mechanisms for representing subject matter that can accommodate a
large portion of the subject matter presented to the firm in a
way that offers considerable leverage on the design of
instruction. Instructional strategy selection within CAI 'R Us'
AIDA relies on explicit selection rules and top-down approach to
instructional design. These commitments are required to handle
the range of subject matters of interest to CAI 'R Us and are
feasibly implemented because of the restricted range of
instructional mechanisms available to the firm. Because design

principles are explicit in CAI 'R Us' AIDA, evaluation can be
quite precise.

Also worth noting is the nature of the interaction between
developer and AIDA. In contrast to AIDA at the Technical
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Training Center, AIDA at CAI 'R Us organizes the design process
around an explicit model of instructional development. _
Developers delineate instructional objectives and have direct
control over the entire design process.

utomat h oncept

This concluding section reviews the issues that must be
faced in designing AIDA, summarizes its design goals, reviews the
design concepts needed to meet these goals, and identifies
unresolved issues.

As I hope the reader has noticed, however, the design goals
of AIDA, the means of reaching those goals, and the issues
associated with the design, depend critically on the
implementation context. Indeed, if the reader has grasped only
this point, this paper will have served its purpose. This paper
therefore needs at least two conclusions, one for each of the
contexts discussed above.

ID2 £ t) !. F Il.c]I s e cente

In both this section and the next, we will address four
questions. What characteristics of the development context are
critical to AIDA's design goals? What should AIDA be like in the
context? What kind of design will satisfy the design goals? What
research is needed to arrive at a design?

. Recall that the Technical
Training Center is organized along technical lines. Each TDB is
responsible for training in a narrowly defined technical area.
Courses are designated by outside authority to meet specified
primary objectives. Subject matter experts, unskilled in
instructional systems design, are responsible for course design
and development. Courses are delivered in lecture-discussions to
small classes, but other media can be and are employed.

als. AIDA will function best in this context if it
is aligned to the mission and experience of its users. It should
be conversant in the technology being taught and be prepared to
create instruction from technical descriptions of the subject
matter. AIDA's recommendations should conform to the principles
of effective instructional design but its users should not be
required to be conversant in those principles. Rather, AIDA
should provide, to its users, the specialized representations of
content and instruction that promote efficient automatic
generation of instruction and control over the final
instructional product.

Design. These design goals can be met by developing, for
each subject-matter domain:
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specialized curriculum templates appropriate to the domain
or specialty,

both specialized and general instructional strategies
addressing particular skills known to be critical to course
objectives (but which can be configured for different
media), and

content representations designed to provide material needed
to implement the curricula and instructional strategies.

The AIDA Executive should operate in a bottom up fashion.
That is, it should start with a curriculum template for the
course, select instructional strategies and then configure those
strategies from the Content component.

. The most critical research issue for AIDA,
as conceived of here, is the nature of the hierarchy illustrated
in Figure 6. Needed is an understanding of how instruction
becomes progressively constrained as content becomes
progressively more specialized. Although this issue can be
partially illuminated by analytical means, instructional analyses
of actual or proposed courses will be needed for a complete
resolution.

Once Figure 8 has been mapped out for a course population of
interest, and once it is known how instruction is successively
constrained as one moves down the hierarchy, one can resolve
certain critical design issues for AIDA:

circumscribing the subject-matter domain(s) to which
particular versions of AIDA apply,

determining the instructional strategies and media needed
for effective instruction in these domain(s),

formulating the knowledge structures that support the
configuration of instructional strategies, and

developing the conceptual and computational mechanism for
the generation of multiple specialized versions of AIDA.
AIDA at CAI 'R Us
t . Unlike the Technical
Training Center, CAI 'R Us must develop courseware for a wide
range of subject matters. However, the media and instructional
methods available to them are limited to those that can be
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implemented with conventional computer-based medig. pevelopment
personnel are available that have considerable skill in all
aspects of instructional design, but subject matter experts are
supplied by clients or engaged as consultants.

Design goals. AIDA at CAI ‘R Us must meet two main
objectives. First, it must provide a means of construct@ng
curricula for a wide range of subject matters. Second, it must
implement these curricula using the mechanisms available through
computer-based instruction. Because of its general scope and
because CAI 'R Us relies on experienced developers, AIDA should
speak the language of instructional design, make explicit its
design decisions and their basis, and give developers control
over the design process. :

Design. To accommodate these design goals, AIDA should be
based on:

a set of instructional strategies that define the course at
various levels ranging from a top-level decomposition of the
curriculum down to individual transaction frames,

transaction frames that are tailored to the methods and
media available with conventional computer-assisted
instruction, and

general knowledge-representation mechanisms for representing
content. :

The AIDA executive should function in a top-down manner. It
should use a production system or a similar type of pattern-
matching mechanism to select and assemble instructional
strategies, starting with a general plan for the curriculum and
proceeding to successively lower levels of detail.

Research issues. Three major issues must be at least
partially resolved for AIDA, as conceived of at CAI 'R Us, can be
developed in a systematic fashion.

The first of these issues is the domain of application of
AIDA. Defining this domain as whatever might come to CAI 'R Us
for development or even whatever is amenable to instruction via
‘ conventional CAI may be sufficient for the purposes of this
exposition, but it is not sufficient to support the actual design
of AIDA. If the boundaries and structure of AIDA's domain are
not defined, then design decisions will be made arbitrarily to
support whatever applications are used for development and
validation. Specialization, of the type made explicit in the
Technical Training Center's AIDA, will occur implicitly in the
development of CAI 'R Us' AIDA. Design decisions made
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prematurely on the basis of a limited sample of applications will
face reconsideration or hacking under stress from other
applications.

The second issue is that of knowledge representation. For
purposes of exposition, we proposed a small number of general
knowledge-representation mechanisms (see Section 3.2). Although
such mechanisms might, in principle, be adequate for a broad
range of applications, in practice, the complexity of many
domains will render them infeasible for representation with a few
general mechanisms. However, specialization of knowledge-
representation mechanisms entails specialization also of
instructional strategies. Carried too far, one might find
oneself with all of the disadvantages of a specialized AIDA and
none of the advantages.

The third issue is that of the instructional design process
itself. As was mentioned in Section 2.2, top-down planners face
the problem of incorporating constraints across widely separated
elements of the plan. The solution to this problem that we
suggested above is by no means new and involves the hierarchical
refinement of the instructional plan using strategies pitched at
various levels of the hierarchy. Needed to implement this
approach is a collection of strategies that is broad enough to
cover all applications without reaching impasses in the design
process and yet specific enough to usefully constrain the course
design. :

To call these issues "research issues" is something of a
misnomer for I see no way of resolving them through a systematic
research program. Rather, their resolution will lie in a
combination of arbitrary decisions and cut-and-try R&D.

conclusion

" Offered here are two very distinct approaches to the
functions and design of AIDA. Both approaches conform to my bias
that AIDA should be more of a tool in the hands of a course
developer than a development engine. Because of this bias, I
recommend that developers with different backgrounds working in
different contexts be given different types of tools, even if
they have similar short-term goals. A subject matter expert
developing instruction in a context defined by his technical
specialty needs a tool that talks to him in technical terms and
isolates him from unnecessary instructional considerations. an
instructional designer working in a context defined more by
instructional technology needs precise and explicit control over
most instructional-design decisions and a system that does not
restrict him to particular content domains.

Other instructional development contexts, not considered
here, will impose their own constraints on AIDA's design goals.
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For example, much training is so resource constrained that the
typical instructional activity must address multiple
instructional objectives and the typical instructional objective
is addressed by multiple instructional activities. Meeting this
requirement is a challenge (to say the least) for any designer of
the AIDA Executive.

As another example, instructional objectives in many
contexts defy formalization but are nonetheless critical to
instruction. The success of a course may, for example, depend on
the extent to which it conveys general corporate goals to the
students. These goals are usually so general that they admit of
no useful computer representation. However, they constitute a
powerful influence in helping students deal with particular
problems. In these and other contexts with ill-defined
instructional problems, AIDA may be completely useless.

Those pursuing the development of AIDA must be aware that it
will have different functional specifications in different
contexts. This awareness may permit the judicious choice of one
or more contexts for further research and development, or, at the
least avoid the disaster of developing AIDA for one context and
evaluating it in another.
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IV. CONCLUSION (Spector)

In Section III Halff provided a view of how an Advanced
Instructional Design Advisor could support the development of two
broad instructional paradigms. Halff argued that cognitive
structures have a significant role to play in instructional
design. Learning mechanisms and instructional design are
interdependent, a fact overlooked by many systems.

As part of his vision, Halff described two approaches to the
automation of instrucitonal design: advisory and generative.
The advisory approach attempts. to automate the formulation of
instructional designs, making implementation primarily the
responsibility of a human developer. The generative approach
attempts to use the computer to generate instruction from known
instructional paradigms. He then presented two examples of
generative approaches and argued that generative approaches
showed some promise. He argued that successful automation of
instructional design would require a prudent division of labor
between the human and the computer. Human developers would still
be required to make decisions concerning the interpretation of
instructional design principles.

In Section IV Halff reviewed the functional components of an
Advanced Instructional Design Advisor and indicated some of the
problems that might be encountered in each area. The
representation of instructional strategies is a crucial issue for
an Advanced Instructional Design Advisor. Strategies could have
a procedural representation or a schematic representation,
depending on the type of Advanced Instructional Design Advisor
desired. Procedural representations could relieve developers of
the burden of knowing a lot about instructional design; that
conception was elaborated in Halff's TTC example. Schematic
representations are highly configurable but require the developer
to know a lot about instructional design; this conception was -
elaborated in the CAI 'R US example. Each type of Advanced
Instructional Design Advisor is possible, although the concerns,
problems, and applicability of each type 'are quite different.

Halff also stressed the importance of building evaluation
into each of the components of any type of Advanced Instructional
Design Advisor. This same concern has been elaborated by
Tennyson in Volume 2 of this series.

The value of Halff's work is that it provides clear choices
and approaches for the automation of instructional design. Halff
also provides research issues and potential problem areas for
particular choices and approaches. As Halff has remarked on
several occasions, it will be important to clearly specify the
potential users and to involve them in the design, development,
and evaluation of an Advanced Instructional Design Advisor.
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